The collective Bamiltonian up to the fourth order for multi-O(4) model is derived based on the self-consistent collective-coordinate (SCC) method, which is formulated in the framework of the time-dependent Hartree...The collective Bamiltonian up to the fourth order for multi-O(4) model is derived based on the self-consistent collective-coordinate (SCC) method, which is formulated in the framework of the time-dependent Hartree-Bogoliubov (TDHB) theory. The validity of the collective Hamiltonian is checked in the two special cases of the multi-O(4) model: the case where the number of the shells is equal to one (a single j-shell case), and the case where the Hartree-Bogoliubov equilibrium point is spherical (the spherical case). The collective Hamiltonian constitutes a good starting point to study nuclear shape coexistence.展开更多
The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted ...The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.展开更多
We extend the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc)to go beyondmean-field framework by performing a two-dimensional collective Hamiltonian.The influences of dynamical correlations on the ...We extend the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc)to go beyondmean-field framework by performing a two-dimensional collective Hamiltonian.The influences of dynamical correlations on the ground-state properties are examined in different mass regions,picking Se,Nd,and Th isotopic chains as representatives.It is found that the dynamical correlation energies(DCEs)and the rotational correction energies E_(rot) in the cranking approximation have an almost equivalent effect on the description of binding energies for most deformed nuclei,and the DCEs can provide a significant improvement for the(near)spherical nuclei close to the neutron shells and thus reduce the rms deviations of S_(2n) by≈17%.Furthermore,it is found that the DCEs are quite sensitive to the pairing correlations;taking ^(148)Nd as an example,a 10%enhancement of pairing strength can raise the DCE by≈37%.展开更多
基金The project supported by the Director Foundation from the Department of Nuclear Physics of China Institute of Atomic Energy under Grant Nos. 11SZZ200501 and 11SZZ200601 0ne of the authors (J.Z. Gu) is grateful to H. Aiba, K. Hagino, K. Matsuyanagi, S. Mizutori, F. Sakata, and Y.Z. Zhuo for valuable discussions on this subject. He also acknowledges support from Postdoctoral Fellowship for Foreign Researchers of the Japan Society for the Promotion of Science with thanks.
文摘The collective Bamiltonian up to the fourth order for multi-O(4) model is derived based on the self-consistent collective-coordinate (SCC) method, which is formulated in the framework of the time-dependent Hartree-Bogoliubov (TDHB) theory. The validity of the collective Hamiltonian is checked in the two special cases of the multi-O(4) model: the case where the number of the shells is equal to one (a single j-shell case), and the case where the Hartree-Bogoliubov equilibrium point is spherical (the spherical case). The collective Hamiltonian constitutes a good starting point to study nuclear shape coexistence.
基金supported by the National Natural Science Foundation of China(No.12205103)。
文摘The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.
基金Supported by the National Natural Science Foundation of China(11875225,12005175,11935003,11875075,11975031,12070131001,11790325)the Fundamental Research Funds for the Central Universities+2 种基金the National Key R&D Program of China(2017YFE0116700,2018YFA0404400)the State Key Laboratory of Nuclear Physics and Technology,Peking University(NPT2020ZZ01)the Fok Ying-Tong Education Foundation。
文摘We extend the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc)to go beyondmean-field framework by performing a two-dimensional collective Hamiltonian.The influences of dynamical correlations on the ground-state properties are examined in different mass regions,picking Se,Nd,and Th isotopic chains as representatives.It is found that the dynamical correlation energies(DCEs)and the rotational correction energies E_(rot) in the cranking approximation have an almost equivalent effect on the description of binding energies for most deformed nuclei,and the DCEs can provide a significant improvement for the(near)spherical nuclei close to the neutron shells and thus reduce the rms deviations of S_(2n) by≈17%.Furthermore,it is found that the DCEs are quite sensitive to the pairing correlations;taking ^(148)Nd as an example,a 10%enhancement of pairing strength can raise the DCE by≈37%.