Abnormal event detection in crowded scenes is a hot topic in computer vision and information retrieval community. In this paper, we study the problems of detecting anomalous behaviors within the video, and propose a r...Abnormal event detection in crowded scenes is a hot topic in computer vision and information retrieval community. In this paper, we study the problems of detecting anomalous behaviors within the video, and propose a robust collective representation with multi-feature descriptors for abnormal event detection. The proposed method represents different features in an identical representation, in which different features of the same topic will show more common properties. Then, we build the intrinsic relation between different feature descriptors and capture concept drift in the video sequence, which can robustly discriminate between abnormal events and normal events. Experimental results on two benchmark datasets and the comparison with the state-of-the-art methods validate the effectiveness of our method.展开更多
文摘Abnormal event detection in crowded scenes is a hot topic in computer vision and information retrieval community. In this paper, we study the problems of detecting anomalous behaviors within the video, and propose a robust collective representation with multi-feature descriptors for abnormal event detection. The proposed method represents different features in an identical representation, in which different features of the same topic will show more common properties. Then, we build the intrinsic relation between different feature descriptors and capture concept drift in the video sequence, which can robustly discriminate between abnormal events and normal events. Experimental results on two benchmark datasets and the comparison with the state-of-the-art methods validate the effectiveness of our method.