By applying the technique of continuous partition of unity and Tychonoff's fixed point theorem,. some new collectively fixed point theorems for a family of set-valued, mappings defined on the product space of nonc...By applying the technique of continuous partition of unity and Tychonoff's fixed point theorem,. some new collectively fixed point theorems for a family of set-valued, mappings defined on the product space of noncompact G-convex spaces are proved. As applications, some nonempty intersetion theorems of Ky Fan type for a family of subsets of the product space of G convex spaces are proved; An existence theorem of solutions for a system of nonlinear inequalities is given in G-convex spaces and some equilibrium existence of abstract economies are also obtained in G convex spaces. Our theorems theorems of improve, unify and generalized many important known results in recent literature.展开更多
Based on a KKM type theorem on FC-space, some new fixed point theorems for Fan-Browder type are established, and then some collectively fixed point theorems for a family of Ф-maps defined on product space of FC-space...Based on a KKM type theorem on FC-space, some new fixed point theorems for Fan-Browder type are established, and then some collectively fixed point theorems for a family of Ф-maps defined on product space of FC-spaces are given.These results generalize and improve many corresponding results.展开更多
Some new continuous selection theorems are first proved in noncompact topological spaces. As applications, some new collectively fixed point theorems and coincidence theorems for two families of set-valued mappings de...Some new continuous selection theorems are first proved in noncompact topological spaces. As applications, some new collectively fixed point theorems and coincidence theorems for two families of set-valued mappings defined on product space of noncompact topological spaces are obtained under very weak assumptions. These results generalize many known results in recent literature.展开更多
By applying the technique of continuous partition of unity, some new coincidence theorems for a better admissible mapping and a family of set-valued mappings defined on the product G-convex spaces are proved. Theorems...By applying the technique of continuous partition of unity, some new coincidence theorems for a better admissible mapping and a family of set-valued mappings defined on the product G-convex spaces are proved. Theorems of this paper improve, unify and generalize many important coincidence theorems and collectively fixed point theorems in recent literature.展开更多
In this article, we introduce and study some new classes of multi-leader-follower generalized constrained multiobjective games in locally FC-uniform spaces where the number of leaders and followers may be finite or in...In this article, we introduce and study some new classes of multi-leader-follower generalized constrained multiobjective games in locally FC-uniform spaces where the number of leaders and followers may be finite or infinite and the objective functions of the followers obtain their values in infinite-dimensional spaces. Each leader has a constrained correspondence. By using a collective fixed point theorem in locally FC-uniform spaces due to author, some existence theorems of equilibrium points for the multi-leader-follower generalized constrained multiobjective games are established under nonconvex settings. These results generalize some corresponding results in recent literature.展开更多
文摘By applying the technique of continuous partition of unity and Tychonoff's fixed point theorem,. some new collectively fixed point theorems for a family of set-valued, mappings defined on the product space of noncompact G-convex spaces are proved. As applications, some nonempty intersetion theorems of Ky Fan type for a family of subsets of the product space of G convex spaces are proved; An existence theorem of solutions for a system of nonlinear inequalities is given in G-convex spaces and some equilibrium existence of abstract economies are also obtained in G convex spaces. Our theorems theorems of improve, unify and generalized many important known results in recent literature.
基金Supported by the National Natural Science Foundation of China(10361005)
文摘Based on a KKM type theorem on FC-space, some new fixed point theorems for Fan-Browder type are established, and then some collectively fixed point theorems for a family of Ф-maps defined on product space of FC-spaces are given.These results generalize and improve many corresponding results.
基金This project is supported by the NSF of Sichuan Education Department of China(2003A081)and SZD0406
文摘Some new continuous selection theorems are first proved in noncompact topological spaces. As applications, some new collectively fixed point theorems and coincidence theorems for two families of set-valued mappings defined on product space of noncompact topological spaces are obtained under very weak assumptions. These results generalize many known results in recent literature.
基金This project is supported by the NNSF of China (19871059) and the Natural Science Foundation of Sichuan Education Department (2003A081).
文摘By applying the technique of continuous partition of unity, some new coincidence theorems for a better admissible mapping and a family of set-valued mappings defined on the product G-convex spaces are proved. Theorems of this paper improve, unify and generalize many important coincidence theorems and collectively fixed point theorems in recent literature.
基金supported by the Scientific Research Fun of Sichuan Normal University(11ZDL01)the Sichuan Province Leading Academic Discipline Project(SZD0406)
文摘In this article, we introduce and study some new classes of multi-leader-follower generalized constrained multiobjective games in locally FC-uniform spaces where the number of leaders and followers may be finite or infinite and the objective functions of the followers obtain their values in infinite-dimensional spaces. Each leader has a constrained correspondence. By using a collective fixed point theorem in locally FC-uniform spaces due to author, some existence theorems of equilibrium points for the multi-leader-follower generalized constrained multiobjective games are established under nonconvex settings. These results generalize some corresponding results in recent literature.