期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Efficiency-based Pareto Optimization of Building Energy Consumption and Thermal Comfort:A Case Study of a Residential Building in Bushehr,Iran
1
作者 Masoud NASOURI Navid DELGARM 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期1037-1054,共18页
In Iran,the intensity of energy consumption in the building sector is almost 3 times the world average,and due to the consumption of fossil fuels as the main source of energy in this sector,as well as the lack of opti... In Iran,the intensity of energy consumption in the building sector is almost 3 times the world average,and due to the consumption of fossil fuels as the main source of energy in this sector,as well as the lack of optimal design of buildings,it has led to excessive release of toxic gases into the environment.This research develops an efficient approach for the simulation-oriented Pareto optimization(SOPO)of building energy efficiency to assist engineers in optimal building design in early design phases.To this end,EnergyPlus,as one of the most powerful and well-known whole-building simulation programs,is combined with the Multi-objective Ant Colony Optimization(MOACO)algorithm through the JAVA programming language.As a result,the capabilities of JAVA programming are added to EnergyPlus without the use of other plugins and third parties.To evaluate the effectiveness of the developed method,it was performed on a residential building located in the hot and semi-arid region of Iran.To obtain the optimum configuration of the building under investigation,the building rotation,window-to-wall ratio,tilt angle of shading device,depth of shading device,color of the external walls,area of solar collector,tilt angle of solar collector,rotation of solar collector,cooling and heating setpoints of heating,ventilation,and air conditioning(HVAC)system are chosen as decision variables.Further,the building energy consumption(BEC),solar collector efficiency(SCE),and predicted percentage of dissatisfied(PPD)index as a measure of the occupants'thermal comfort level are chosen as the objective functions.The single-objective optimization(SO)and Pareto optimization(PO)are performed.The obtained results are compared to the initial values of the basic model.The optimization results depict that the PO provides optimal solutions more reliable than those obtained by the SOs,owing to the lower value of the deviation index.Moreover,the optimal solutions extracted through the PO are depicted in the form of Pareto fronts.Eventually,the Linear Programming Technique for Multidimensional Analysis of Preference(LINMAP)technique as one of the well-known multi-criteria decision-making(MCDM)methods is utilized to adopt the optimum building configuration from the set of Pareto optimal solutions.Further,the results of PO show that although BEC increases from 136 GJ to 140 GJ,PPD significantly decreases from 26%to 8%and SCE significantly increases from 16%to 25%.The introduced SOPO method suggests an effective and practical approach to obtain optimal solutions during the building design phase and provides an opportunity for building engineers to have a better picture of the range of options for decision-making.In addition,the method presented in this study can be applied to different types of buildings in different climates. 展开更多
关键词 building energy consumption thermal comfort collector efficiency simulation-oriented pareto optimization
原文传递
Using the Taguchi Method and Grey Relational Analysis to Optimize the Performance of a Solar Air Heater
2
作者 Manar B.AL-Hajji Nabeel Abu Shaban +1 位作者 Shahnaz Al Khalil Ayat Al-Jarrah 《Energy Engineering》 EI 2021年第5期1425-1438,共14页
Solar energy is regarded as one of the promising renewable energy sources in the world.The main aim of this study is to use the Taguchi-Grey relational grade analysis to optimize the performance of two Solar Air Heate... Solar energy is regarded as one of the promising renewable energy sources in the world.The main aim of this study is to use the Taguchi-Grey relational grade analysis to optimize the performance of two Solar Air Heaters(SAHs).A typical Grey–Taguchi method was applied.The Orthogonal Array,Signal-to-Noise ratio,Grey Relational Grade,and Analysis of Variance were employed to investigate the performance characteristics of SAH.Experimental observations were made in agreement with Jordanian climate 32°00′N latitude and 36°00′E longitude with a solar intensity of 500 W\m^(2).The operating factors selected for optimization are the tilt angle(T)with three levels(0°,22°,45°),inlet velocity(V)with two levels(1.2,1.8 m/s),and absorber plate material(M)with two levels(Aluminum,wood).In this study,the Grey–Taguchi approach is validated by performing 12 individual experiments.The results show that the process factors sequence required for a maximum SAH efficiency(SAHµ)is V>T>M.Using this approach,we combined the Orthogonal Array design with Grey Relational Analysis.As a result of that,the level of each operating conditions which optimizes both process responses(Temperature difference,ΔT and Solar air heater efficiency,SAHµ)can be specified with a minimum number of tests compared with classic Grey Relational Analysis.The optimal operating conditions of a SAH for multiple performance characteristics are determined as T2,M2,and V2,respectively,which are in congruence with the experimental results. 展开更多
关键词 Solar air heater collector efficiency thermal efficiency grey-taguchi method robust design
下载PDF
Characteristics and application of road absorbing solar energy 被引量:1
3
作者 Zhihua ZHOU Shan HU +1 位作者 Xiaoyan ZHANG Jian ZUO 《Frontiers in Energy》 SCIE CSCD 2013年第4期525-534,共10页
If the heat of road surface can be stored in summer, the road surface temperature will be decreased to prevent permanent deformation of pavement. Besides, if the heat stored is released, it can supply heat for buildin... If the heat of road surface can be stored in summer, the road surface temperature will be decreased to prevent permanent deformation of pavement. Besides, if the heat stored is released, it can supply heat for buildings or raise the road surface temperature for snow melting in winter. A road-solar energy system was built in this study, and the heat transfer mechanism and effect of the system were analyzed according to the monitored solar radiant heat, the solar energy absorbed by road and the heat stored by soil. The results showed that the road surface temperature was mainly affected by solar radiation, but the effect is hysteretic in nature. The temperature of the solar road surface was 3~C-6~C lower than that of the ordinary road surface. The temperature of the solar road along the vertical direction was 2~C-5~C lower than that of the ordinary road. The temperature difference increased as the distance to the heat transfer tubes decreased. The average solar collector efficiency of the system was 14.4%, and the average solar absorptivity of road surface was 36%. 展开更多
关键词 solar energy road-solar energy system road surface temperature solar absorptivity of road surface solar collector efficiency of system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部