The arc-suppression coil(ASC)in parallel low resistance(LR)multi-mode grounding is adopted in the mountain wind farm to cope with the phenomenon that is misoperation or refusal of zero-sequence protection in LR ground...The arc-suppression coil(ASC)in parallel low resistance(LR)multi-mode grounding is adopted in the mountain wind farm to cope with the phenomenon that is misoperation or refusal of zero-sequence protection in LR grounding wind farm.If the fault disappears before LR is put into the system,it is judged as an instantaneous fault;while the fault does not disappear after LR is put into the system,it is judged as a permanent fault;the single-phase grounding fault(SLG)protection criterion based on zerosequence power variation is proposed to identify the instantaneous-permanent fault.Firstly,the distribution characteristic of zero-sequence voltage(ZSV)and zero-sequence current(ZSC)are analyzed after SLGfault occurs in multi-mode grounding.Then,according to the characteristics that zero-sequence power variation of non-fault collector line is small,while the zero-sequence power variation of fault collector line can reflect the active power component of fault resistance,the protection criterion based on zero-sequence power variation is constructed.The theoretical analysis and simulation results show that the protection criterion can distinguish the property of fault only by using the single terminal information,which has high reliability.展开更多
The impact of large-scale wind farms on power system stability should be carefully investigated,in which mal-functions usually exist in the collector line's relay protection.In order to solve this challenging prob...The impact of large-scale wind farms on power system stability should be carefully investigated,in which mal-functions usually exist in the collector line's relay protection.In order to solve this challenging problem,a novel time-domain protection scheme for collector lines,based on random matrix theory(RMT),is proposed in this paper.First,the collected currents are preprocessed to form time series data.Then,a real-time sliding time window is used to form a consecutive time series data matrix.Based on RMT,mean spectral radius(MSR)is used to analyze time series data characteristics after real-time calculations are performed.Case studies demonstrate that RMT is independent from fault locations and fault types.In particular,faulty and non-faulty collector lines can be accurately and efficiently identified compared with traditional protection schemes.展开更多
基金This paper is supported in part by the National Natural Science Foundations of China,and the Major Science and Technology Projects in Yunnan Province under Grant Nos.51667010,51807085,and 202002AF080001.
文摘The arc-suppression coil(ASC)in parallel low resistance(LR)multi-mode grounding is adopted in the mountain wind farm to cope with the phenomenon that is misoperation or refusal of zero-sequence protection in LR grounding wind farm.If the fault disappears before LR is put into the system,it is judged as an instantaneous fault;while the fault does not disappear after LR is put into the system,it is judged as a permanent fault;the single-phase grounding fault(SLG)protection criterion based on zerosequence power variation is proposed to identify the instantaneous-permanent fault.Firstly,the distribution characteristic of zero-sequence voltage(ZSV)and zero-sequence current(ZSC)are analyzed after SLGfault occurs in multi-mode grounding.Then,according to the characteristics that zero-sequence power variation of non-fault collector line is small,while the zero-sequence power variation of fault collector line can reflect the active power component of fault resistance,the protection criterion based on zero-sequence power variation is constructed.The theoretical analysis and simulation results show that the protection criterion can distinguish the property of fault only by using the single terminal information,which has high reliability.
基金the National Natural Science Foundation of China(No.51807085,52037003)Key Science and Technology Project of Yunnan Province,China(202002AF080001)。
文摘The impact of large-scale wind farms on power system stability should be carefully investigated,in which mal-functions usually exist in the collector line's relay protection.In order to solve this challenging problem,a novel time-domain protection scheme for collector lines,based on random matrix theory(RMT),is proposed in this paper.First,the collected currents are preprocessed to form time series data.Then,a real-time sliding time window is used to form a consecutive time series data matrix.Based on RMT,mean spectral radius(MSR)is used to analyze time series data characteristics after real-time calculations are performed.Case studies demonstrate that RMT is independent from fault locations and fault types.In particular,faulty and non-faulty collector lines can be accurately and efficiently identified compared with traditional protection schemes.