Using CAE tools based on nonlinear finite element methods, full-frontalcollision dynamic simulation and analysis of a sedan car body with 3D tubular load bearing frame aretentatively carried out. Time histories of the...Using CAE tools based on nonlinear finite element methods, full-frontalcollision dynamic simulation and analysis of a sedan car body with 3D tubular load bearing frame aretentatively carried out. Time histories of the main collisional parameters are presented,improvements of the frame are partially made according to simulation results. Collisional simulationof the tubular frame alone indicates that, such new type of bodywork for sedan car is of goodpotentialities to meet the collision safety regulations.展开更多
The electron swarm parameters of SF6/N2 are calculated in the present study using an improved Monte Carlo collision simulation method (MCS). And some improved sampling techniques are also adopted. The simulation res...The electron swarm parameters of SF6/N2 are calculated in the present study using an improved Monte Carlo collision simulation method (MCS). And some improved sampling techniques are also adopted. The simulation results show that the improved simulation method can provide more accurate results.展开更多
A systematic research on the electron deposition process in the JAEA 10 A ion source is carried out by using a particle-in-cell/Monte Carlo collision simulation, which is based on a full three-dimensional self-develop...A systematic research on the electron deposition process in the JAEA 10 A ion source is carried out by using a particle-in-cell/Monte Carlo collision simulation, which is based on a full three-dimensional self-developed code. Two parts are studied. One is the space and energy distribution of fast and slow electrons, the other is the vibration excitation collisions between electrons and hydrogen moleculars. The results show that the inhomogeneity of electrons comes from the Y direction drift of the fast electrons (Te ≥25 eV) due to the action of the magnetic fields. This drift also increases the number of vibration excitation collisions in the -Y direction, and results in the increase of Ha in the -Y direction, eventually leading to the -Y drift of H^-. It explains the spatial non-uniformity in the JAEA 10 A ion source.展开更多
By combining the microwave propagation theory and the gas breakdown theory, the microwave propagation with the gas breakdown is analyzed theoretically. Particle-in-cell/Monte Carlo collision (PIC/MCC) simulations ar...By combining the microwave propagation theory and the gas breakdown theory, the microwave propagation with the gas breakdown is analyzed theoretically. Particle-in-cell/Monte Carlo collision (PIC/MCC) simulations are carried out to verify the theoretical results. Based on this theoretical method, the breakdown phenomenon of the pulse microwave is analyzed. The results show that the product values of the initial electron density and the propagation length are the criterion to distinguish the pulse peak decline breakdown and the pulse width reduction breakdown. Furthermore, the energy transmission is also studied, which shows that the total output energy is approximately independent of the input electric field if the electric field is not extremely large.展开更多
This paper described an improved underwater confrontation simulation method of naval amphibious operational training system. The initial position of submarine forces on the enemy is generated automatically, and the at...This paper described an improved underwater confrontation simulation method of naval amphibious operational training system. The initial position of submarine forces on the enemy is generated automatically, and the attacking distance model of torpedoes is established based on the kinematics theory, which is more flexible and reasonable to judge the launch condition compared to traditional method. The two kinds of confrontation behavior models on the enemy submarine are created to depict its tactical action from the defensive to the offensive as well as the contrary, ensuring that operational style is simulated more comprehensively and properly. The existing motion trajectory estimation and collision detection algorithms on operational platforms are also improved to reduce the iteration error and further enhance the detection accuracy of target hit.展开更多
This paper examines the energy-absorption characteristics of trains for active-passive safety protection.A one-dimensional collision-simulation model of traditional subway vehicles and active-passive safety vehicles w...This paper examines the energy-absorption characteristics of trains for active-passive safety protection.A one-dimensional collision-simulation model of traditional subway vehicles and active-passive safety vehicles was developed based on the multibody dynamics theory using MATLAB simulation software.The effectiveness of the simulation model was verified by scaled-collision tests.Then,the energy-absorption characteristics of traditional trains and the active-passive safety trains under different marshalling conditions were studied.The results showed that as the number of marshalling vehicles increased from 5 to 8,the energy absorption of interface 1 for the active-passive safety trains during the collision was 681 kJ,775 kJ,840 kJ and 901 kJ,and the physical compression of the interface of the head car of the active-passive safety trains was 619 mm,704 mm,764 mm and 816 mm,which was far below the maximum value of 1773 mm.The head car of the active-passive safety subway vehicles therefore had sufficient energy-absorption capacity.Finally,to find the maximum safe impact velocity of the active-passive safety trains,the energy distribution of the active-passive safety subway vehicles with 8-car marshalling at different impact velocities was studied.It was found that the safe impact velocity of an active-passive safety subway vehicle conforming to the requirements of the EN15227 collision standard reached 32 km/h,far exceeding the safe impact velocity of 25 km/h allowed by traditional trains,and representing an increase in the safe impact velocity of 28%.The total collision-energy absorption of the interface of the head car of the active-passive trains was 89.1%higher than that of the traditional trains at the safe impact velocity.The active-passive energy absorption method was therefore effective at improving the crashworthiness of the subway trains.展开更多
基金This project is supported by Provincial Science Foundation of Guangdong, China (No.990574).
文摘Using CAE tools based on nonlinear finite element methods, full-frontalcollision dynamic simulation and analysis of a sedan car body with 3D tubular load bearing frame aretentatively carried out. Time histories of the main collisional parameters are presented,improvements of the frame are partially made according to simulation results. Collisional simulationof the tubular frame alone indicates that, such new type of bodywork for sedan car is of goodpotentialities to meet the collision safety regulations.
基金National Natural Science Foundation of China(Nos.50607004,90715029)the Science Foundation of Hunan University,China
文摘The electron swarm parameters of SF6/N2 are calculated in the present study using an improved Monte Carlo collision simulation method (MCS). And some improved sampling techniques are also adopted. The simulation results show that the improved simulation method can provide more accurate results.
基金supported by the National Natural Science Foundation of China(Grant No.11176032)the China Academy of Engineering Physics(CAEP)THz Science and Technology Foundation(Grant No.CAEPTHZ201209)+1 种基金the Scientific Reserch Fund of Sichuan Provincial Education Department,China(GrantNo.12ZA183)the Southwest University of Science and Technology Doctor Fund,China(Grant No.13zx7106)
文摘A systematic research on the electron deposition process in the JAEA 10 A ion source is carried out by using a particle-in-cell/Monte Carlo collision simulation, which is based on a full three-dimensional self-developed code. Two parts are studied. One is the space and energy distribution of fast and slow electrons, the other is the vibration excitation collisions between electrons and hydrogen moleculars. The results show that the inhomogeneity of electrons comes from the Y direction drift of the fast electrons (Te ≥25 eV) due to the action of the magnetic fields. This drift also increases the number of vibration excitation collisions in the -Y direction, and results in the increase of Ha in the -Y direction, eventually leading to the -Y drift of H^-. It explains the spatial non-uniformity in the JAEA 10 A ion source.
基金supported by the National Natural Science Foundation of China(Grant No.11175040)
文摘By combining the microwave propagation theory and the gas breakdown theory, the microwave propagation with the gas breakdown is analyzed theoretically. Particle-in-cell/Monte Carlo collision (PIC/MCC) simulations are carried out to verify the theoretical results. Based on this theoretical method, the breakdown phenomenon of the pulse microwave is analyzed. The results show that the product values of the initial electron density and the propagation length are the criterion to distinguish the pulse peak decline breakdown and the pulse width reduction breakdown. Furthermore, the energy transmission is also studied, which shows that the total output energy is approximately independent of the input electric field if the electric field is not extremely large.
基金Supported by the National Natural Science Foundation of China(61401496)
文摘This paper described an improved underwater confrontation simulation method of naval amphibious operational training system. The initial position of submarine forces on the enemy is generated automatically, and the attacking distance model of torpedoes is established based on the kinematics theory, which is more flexible and reasonable to judge the launch condition compared to traditional method. The two kinds of confrontation behavior models on the enemy submarine are created to depict its tactical action from the defensive to the offensive as well as the contrary, ensuring that operational style is simulated more comprehensively and properly. The existing motion trajectory estimation and collision detection algorithms on operational platforms are also improved to reduce the iteration error and further enhance the detection accuracy of target hit.
文摘This paper examines the energy-absorption characteristics of trains for active-passive safety protection.A one-dimensional collision-simulation model of traditional subway vehicles and active-passive safety vehicles was developed based on the multibody dynamics theory using MATLAB simulation software.The effectiveness of the simulation model was verified by scaled-collision tests.Then,the energy-absorption characteristics of traditional trains and the active-passive safety trains under different marshalling conditions were studied.The results showed that as the number of marshalling vehicles increased from 5 to 8,the energy absorption of interface 1 for the active-passive safety trains during the collision was 681 kJ,775 kJ,840 kJ and 901 kJ,and the physical compression of the interface of the head car of the active-passive safety trains was 619 mm,704 mm,764 mm and 816 mm,which was far below the maximum value of 1773 mm.The head car of the active-passive safety subway vehicles therefore had sufficient energy-absorption capacity.Finally,to find the maximum safe impact velocity of the active-passive safety trains,the energy distribution of the active-passive safety subway vehicles with 8-car marshalling at different impact velocities was studied.It was found that the safe impact velocity of an active-passive safety subway vehicle conforming to the requirements of the EN15227 collision standard reached 32 km/h,far exceeding the safe impact velocity of 25 km/h allowed by traditional trains,and representing an increase in the safe impact velocity of 28%.The total collision-energy absorption of the interface of the head car of the active-passive trains was 89.1%higher than that of the traditional trains at the safe impact velocity.The active-passive energy absorption method was therefore effective at improving the crashworthiness of the subway trains.