Salinization has led to the deterioration of the ecological environment,affected the growth of plants,and hindered the development of agriculture and forestry.Arbuscular mycorrhizal(AM)fungi,as important soil microorg...Salinization has led to the deterioration of the ecological environment,affected the growth of plants,and hindered the development of agriculture and forestry.Arbuscular mycorrhizal(AM)fungi,as important soil microorganisms,play significant physiological and ecological roles in promoting plant nutrient absorption and improving soil structure.Puccinellia tenuiflora(Turcz.)Scribn.et Merr.in Songnen saline-alkaline grassland was selected as the research object to observe AM fungal colonization of the roots and explore the species and diversity of AM fungi in symbiotic association with P.tenuiflora.This study showed that AM fungi colonized in P.tenuiflora roots and formed a typical Arum-type mycorrhizal structure.A significant correlation was observed between vesicular abundance and the colonization intensity of mycorrhiza.Isolation and identification revealed 40 species of AM fungi in the rhizosphere of P.tenuiflora,belonging to 14 genera,of which two species could not be identified.The richness of the genus Glomus was the highest,accounting for 30%of the total species.Funneliformis mosseae and Rhizophagus intraradices were isolated from all the samples and were the species with the widest distribution in the rhizosphere of P.tenuiflora.Correlation analysis showed that pH only had a significant impact on the distribution of a few species,such as Glomus pustulatum,Diversispora spurca,Glomus aggregatum,Rhizophagus clarum,and Acaulospora foveata.The present study provides a theoretical basis for further exploring the resources of AM fungi in saline-alkaline soil.展开更多
Arbuscular mycorrhizal fungi(AMF)provide essential nutrients to crops and are affected by fertilizers.Phosphate-solubilizing bacteria(PSB),nitrogen-fixing bacteria(NFB),and AMF have mutually beneficial relationships w...Arbuscular mycorrhizal fungi(AMF)provide essential nutrients to crops and are affected by fertilizers.Phosphate-solubilizing bacteria(PSB),nitrogen-fixing bacteria(NFB),and AMF have mutually beneficial relationships with plants,but the effects of their interactions on plant growth by regulating rhizosphere fungal community have not been sufficiently studied.In this study,a greenhouse pot experiment was conducted to investigate the interactions between AMF and bacteria(PSB and NFB)on the growth of Lotus corniculatus L.Specifically,the role of rhizosphere fungal community in the growth of Lotus corniculatus L.was explored using Illumina MiSeq high-throughput sequencing.The results showed that combined inoculation of AMF with PSB and NFB increased plant biomass,plant height,and fungal colonization rate.The richness,complexity,and stability of rhizosphere fungal community also increased after combined inoculation of AMF with PSB and/or NFB,particularly with PSB.In addition,combined inoculation of AMF with PSB and NFB enriched the abundance of beneficial microorganisms,with Chaetomium and Humicola showing the greatest alterations.The structural equation model showed that the interactions of AMF with PSB and NFB promoted plant growth by affecting fungal network structure and soil enzyme activities involved in carbon,nitrogen,and phosphorus cycling.These findings provide evidence for the effects of interactions of AMF with PSB and NFB on rhizosphere fungal community and plant growth.展开更多
基金This work was supported by the National Natural Science Foundation of China(31601986)the Fundamental Research Funds for the Central Universities(2572018BK02)Heilongjiang Postdoctoral Scientific Research Developmental Fund(LBH-Q16005).
文摘Salinization has led to the deterioration of the ecological environment,affected the growth of plants,and hindered the development of agriculture and forestry.Arbuscular mycorrhizal(AM)fungi,as important soil microorganisms,play significant physiological and ecological roles in promoting plant nutrient absorption and improving soil structure.Puccinellia tenuiflora(Turcz.)Scribn.et Merr.in Songnen saline-alkaline grassland was selected as the research object to observe AM fungal colonization of the roots and explore the species and diversity of AM fungi in symbiotic association with P.tenuiflora.This study showed that AM fungi colonized in P.tenuiflora roots and formed a typical Arum-type mycorrhizal structure.A significant correlation was observed between vesicular abundance and the colonization intensity of mycorrhiza.Isolation and identification revealed 40 species of AM fungi in the rhizosphere of P.tenuiflora,belonging to 14 genera,of which two species could not be identified.The richness of the genus Glomus was the highest,accounting for 30%of the total species.Funneliformis mosseae and Rhizophagus intraradices were isolated from all the samples and were the species with the widest distribution in the rhizosphere of P.tenuiflora.Correlation analysis showed that pH only had a significant impact on the distribution of a few species,such as Glomus pustulatum,Diversispora spurca,Glomus aggregatum,Rhizophagus clarum,and Acaulospora foveata.The present study provides a theoretical basis for further exploring the resources of AM fungi in saline-alkaline soil.
基金supported by the Key Research and Development Program of Anhui Province,China(No.202204c06020021)the National Natural Science Foundation of China(Nos.U21A20235 and 32201308)。
文摘Arbuscular mycorrhizal fungi(AMF)provide essential nutrients to crops and are affected by fertilizers.Phosphate-solubilizing bacteria(PSB),nitrogen-fixing bacteria(NFB),and AMF have mutually beneficial relationships with plants,but the effects of their interactions on plant growth by regulating rhizosphere fungal community have not been sufficiently studied.In this study,a greenhouse pot experiment was conducted to investigate the interactions between AMF and bacteria(PSB and NFB)on the growth of Lotus corniculatus L.Specifically,the role of rhizosphere fungal community in the growth of Lotus corniculatus L.was explored using Illumina MiSeq high-throughput sequencing.The results showed that combined inoculation of AMF with PSB and NFB increased plant biomass,plant height,and fungal colonization rate.The richness,complexity,and stability of rhizosphere fungal community also increased after combined inoculation of AMF with PSB and/or NFB,particularly with PSB.In addition,combined inoculation of AMF with PSB and NFB enriched the abundance of beneficial microorganisms,with Chaetomium and Humicola showing the greatest alterations.The structural equation model showed that the interactions of AMF with PSB and NFB promoted plant growth by affecting fungal network structure and soil enzyme activities involved in carbon,nitrogen,and phosphorus cycling.These findings provide evidence for the effects of interactions of AMF with PSB and NFB on rhizosphere fungal community and plant growth.