期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Tongue image segmentation and tongue color classification based on deep learning 被引量:4
1
作者 LIU Wei CHEN Jinming +3 位作者 LIU Bo HU Wei WU Xingjin ZHOU Hui 《Digital Chinese Medicine》 2022年第3期253-263,共11页
Objective To propose two novel methods based on deep learning for computer-aided tongue diagnosis,including tongue image segmentation and tongue color classification,improving their diagnostic accuracy.Methods LabelMe... Objective To propose two novel methods based on deep learning for computer-aided tongue diagnosis,including tongue image segmentation and tongue color classification,improving their diagnostic accuracy.Methods LabelMe was used to label the tongue mask and Snake model to optimize the labeling results.A new dataset was constructed for tongue image segmentation.Tongue color was marked to build a classified dataset for network training.In this research,the Inception+Atrous Spatial Pyramid Pooling(ASPP)+UNet(IAUNet)method was proposed for tongue image segmentation,based on the existing UNet,Inception,and atrous convolution.Moreover,the Tongue Color Classification Net(TCCNet)was constructed with reference to ResNet,Inception,and Triple-Loss.Several important measurement indexes were selected to evaluate and compare the effects of the novel and existing methods for tongue segmentation and tongue color classification.IAUNet was compared with existing mainstream methods such as UNet and DeepLabV3+for tongue segmentation.TCCNet for tongue color classification was compared with VGG16 and GoogLeNet.Results IAUNet can accurately segment the tongue from original images.The results showed that the Mean Intersection over Union(MIoU)of IAUNet reached 96.30%,and its Mean Pixel Accuracy(MPA),mean Average Precision(mAP),F1-Score,G-Score,and Area Under Curve(AUC)reached 97.86%,99.18%,96.71%,96.82%,and 99.71%,respectively,suggesting IAUNet produced better segmentation than other methods,with fewer parameters.Triplet-Loss was applied in the proposed TCCNet to separate different embedded colors.The experiment yielded ideal results,with F1-Score and mAP of the TCCNet reached 88.86% and 93.49%,respectively.Conclusion IAUNet based on deep learning for tongue segmentation is better than traditional ones.IAUNet can not only produce ideal tongue segmentation,but have better effects than those of PSPNet,SegNet,UNet,and DeepLabV3+,the traditional networks.As for tongue color classification,the proposed network,TCCNet,had better F1-Score and mAP values as compared with other neural networks such as VGG16 and GoogLeNet. 展开更多
关键词 Tongue image analysis Tongue image segmentation Tongue color classification Deep learning Convolutional neural network Snake model Atrous convolution
下载PDF
Performance evaluation of wavelet scattering network in image texture classification in various color spaces 被引量:2
2
作者 伍家松 姜龙玉 +2 位作者 韩旭 Lotfi Senhadji 舒华忠 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期46-50,共5页
The optimized color space is searched by using the wavelet scattering network in the KTH_TIPS_COL color image database for image texture classification. The effect of choosing the color space on the classification acc... The optimized color space is searched by using the wavelet scattering network in the KTH_TIPS_COL color image database for image texture classification. The effect of choosing the color space on the classification accuracy is investigated by converting red green blue (RGB) color space to various other color spaces. The results show that the classification performance generally changes to a large degree when performing color texture classification in various color spaces, and the opponent RGB-based wavelet scattering network outperforms other color spaces-based wavelet scattering networks. Considering that color spaces can be changed into each other, therefore, when dealing with the problem of color texture classification, converting other color spaces to the opponent RGB color space is recommended before performing the wavelet scattering network. 展开更多
关键词 wavelet scattering network color texture classification color spaces opponent mechanism
下载PDF
An Automated Player Detection and Tracking in Basketball Game 被引量:3
3
作者 P.K.Santhosh B.Kaarthick 《Computers, Materials & Continua》 SCIE EI 2019年第3期625-639,共15页
Vision-based player recognition is critical in sports applications.Accuracy,efficiency,and Low memory utilization is alluring for ongoing errands,for example,astute communicates and occasion classification.We develope... Vision-based player recognition is critical in sports applications.Accuracy,efficiency,and Low memory utilization is alluring for ongoing errands,for example,astute communicates and occasion classification.We developed an algorithm that tracks the movements of different players from a video of a basketball game.With their position tracked,we then proceed to map the position of these players onto an image of a basketball court.The purpose of tracking player is to provide the maximum amount of information to basketball coaches and organizations,so that they can better design mechanisms of defence and attack.Overall,our model has a high degree of identification and tracking of the players in the court.We directed investigations on soccer,basketball,ice hockey and pedestrian datasets.The trial comes about an exhibit that our technique can precisely recognize players under testing conditions.Contrasted and CNNs that are adjusted from general question identification systems,for example,Faster-RCNN,our approach accomplishes cutting edge exactness on three sorts of recreations(basketball,soccer and ice hockey)with 1000×fewer parameters.The all-inclusive statement of our technique is additionally shown on a standard passer-by recognition dataset in which our strategy accomplishes aggressive execution contrasted and cutting-edge methods. 展开更多
关键词 Player detection basketball game player tracking court detection color classification mapping pedestrian detection heat map
下载PDF
Real-time grain breakage sensing for rice combine harvesters using machine vision technology 被引量:6
4
作者 Jin Chen Yi Lian +3 位作者 Rong Zou Shuai Zhang Xiaobo Ning Mengna Han 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第3期194-199,共6页
Breakage rate is one of the most important indicators to evaluate the harvesting performance of a combine harvester.It is affected by operating parameters of a combine such as feeding rate,the peripheral speed of the ... Breakage rate is one of the most important indicators to evaluate the harvesting performance of a combine harvester.It is affected by operating parameters of a combine such as feeding rate,the peripheral speed of the threshing cylinder and concave clearance,and shows complex non-linear law.Real-time acquisition of the breakage rate is an effective way to find the correlation of them.In addition,real-time monitoring of the breakage rate can help the driver optimize and adjust the operating parameters of a combine harvester to avoid the breakage rate exceeding the standard.In this study,a real-time monitoring method for the grain breakage rate of the rice combine harvester based on machine vision was proposed.The structure of the sampling device was designed to obtain rice kernel images of high quality in the harvesting process.According to the working characteristics of the combine,the illumination and installation of the light source were optimized,and the lateral lighting system was constructed.A two-step method of“color training-verification”was applied to identify the whole and broken kernels.In the first step,the local threshold algorithm was used to get the edge of kernel particles in a few training images with binary transformation,extract the color spectrum of each particle in color-space HSL and output the recognition model file.The second step was to verify the recognition accuracy and the breakage rate monitoring accuracy through grabbing and processing images in the laboratory.The experiments of about 2300 particles showed that the recognition accuracy of 96%was attained,and the monitoring values of breakage rate and the true artificial monitoring values had good trend consistency.The monitoring device of grain breakage rate based on machine vision can provide technical supports for the intellectualization of combine harvester. 展开更多
关键词 combine harvester breakage rate monitoring sampling box structure machine vision color classification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部