期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Color image segmentation using mean shift and improved ant clustering 被引量:3
1
作者 刘玲星 谭冠政 M.Sami Soliman 《Journal of Central South University》 SCIE EI CAS 2012年第4期1040-1048,共9页
To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can ... To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability. 展开更多
关键词 color image segmentation improved ant clustering graph partition mean shift
下载PDF
Color Image Segmentation Using Feedforward Neural Networks with FCM 被引量:3
2
作者 S.Arumugadevi V.Seenivasagam 《International Journal of Automation and computing》 EI CSCD 2016年第5期491-500,共10页
This paper proposes a hybrid technique for color image segmentation. First an input image is converted to the image of CIE L*a*b* color space. The color features "a" and "b" of CIE L^*a^*b^* are then fed int... This paper proposes a hybrid technique for color image segmentation. First an input image is converted to the image of CIE L*a*b* color space. The color features "a" and "b" of CIE L^*a^*b^* are then fed into fuzzy C-means (FCM) clustering which is an unsupervised method. The labels obtained from the clustering method FCM are used as a target of the supervised feed forward neural network. The network is trained by the Levenberg-Marquardt back-propagation algorithm, and evaluates its performance using mean square error and regression analysis. The main issues of clustering methods are determining the number of clusters and cluster validity measures. This paper presents a method namely co-occurrence matrix based algorithm for finding the number of clusters and silhouette index values that are used for cluster validation. The proposed method is tested on various color images obtained from the Berkeley database. The segmentation results from the proposed method are validated and the classification accuracy is evaluated by the parameters sensitivity, specificity, and accuracy. 展开更多
关键词 color image segmentation neural networks fuzzy C-means (FCM) soft computing CLUSTERING
原文传递
Color Image Segmentation by Edge Linking and Region Grouping
3
作者 王宁 杨杰 《Journal of Shanghai Jiaotong university(Science)》 EI 2011年第4期412-419,共8页
A novel method toward color image segmentation is proposed based on edge linking and region grouping. Firstly,the edges extracted by the Canny detector are linked to form regions.Each of the end points of edges is con... A novel method toward color image segmentation is proposed based on edge linking and region grouping. Firstly,the edges extracted by the Canny detector are linked to form regions.Each of the end points of edges is connected by a direct line to the nearest pixel on another edge segment within a sub-window.A new distance is defined based on the feature that the edge tends to preserve its original direction.By sampling the lines to the image,the image is over-segmented to labeled regions.Secondly,the labeled regions are grouped both locally and globally.A decision tree is constructed to decide the importance of properties that affect the merging procedure.Finally,the result is refined by user’s selection of regions that compose the desired object. Experiments show that the method can effectively segment the object and is much faster than the state-of-the-art color image segmentation methods. 展开更多
关键词 color image segmentation edge linking region grouping
原文传递
Color-texture segmentation using JSEG based on Gaussian mixture modeling 被引量:4
4
作者 Wang Yuzhong Yang Jie Zhou Yue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期24-29,共6页
An improved approach for J-value segmentation (JSEG) is presented for unsupervised color image segmentation. Instead of color quantization algorithm, an automatic classification method based on adaptive mean shift ... An improved approach for J-value segmentation (JSEG) is presented for unsupervised color image segmentation. Instead of color quantization algorithm, an automatic classification method based on adaptive mean shift (AMS) based clustering is used for nonparametric clustering of image data set. The clustering results are used to construct Gaussian mixture modelling (GMM) of image data for the calculation of soft J value. The region growing algorithm used in JSEG is then applied in segmenting the image based on the multiscale soft J-images. Experiments show that the synergism of JSEG and the soft classification based on AMS based clustering and GMM overcomes the limitations of JSEG successfully and is more robust. 展开更多
关键词 color image segmentation JSEG adaptive mean shift based dustering Gaussian mixture modeling soft J-value.
下载PDF
A Study on the Influence of Luminance L* in the L*a*b* Color Space during Color Segmentation 被引量:1
5
作者 Rodolfo Alvarado-Cervantes Edgardo M. Felipe-Riveron +1 位作者 Vladislav Khartchenko Oleksiy Pogrebnyak 《Journal of Computer and Communications》 2016年第3期28-34,共7页
In this paper an evaluation of the influence of luminance L* at the L*a*b* color space during color segmentation is presented. A comparative study is made between the behavior of segmentation in color images using onl... In this paper an evaluation of the influence of luminance L* at the L*a*b* color space during color segmentation is presented. A comparative study is made between the behavior of segmentation in color images using only the Euclidean metric of a* and b* and an adaptive color similarity function defined as a product of Gaussian functions in a modified HSI color space. For the evaluation synthetic images were particularly designed to accurately assess the performance of the color segmentation. The testing system can be used either to explore the behavior of a similarity function (or metric) in different color spaces or to explore different metrics (or similarity functions) in the same color space. From the results is obtained that the color parameters a* and b* are not independent of the luminance parameter L* as one might initially assume. 展开更多
关键词 color image segmentation CIELAB color Space L*a*b* color Space color Metrics color segmentation Evaluation Synthetic color image Generation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部