High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching...High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.展开更多
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ...The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.展开更多
High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion te...High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies.Herein,we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction(OER)for alkaline electrolysis,which yields current density of 10 mA cm^(-2)at an overpotential of 215 mV in 0.1 M KOH electrolyte.The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity.Raman spectra revealed that the catalyst underwent structure reconstruction during OER,evolving into oxyhydroxide,which was the active site proceeding OER in alkaline electrolyte.In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst.This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability.These findings provide promising strategies for the rational design of nonnoble metal OER catalysts.展开更多
Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer u...Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection.展开更多
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year...Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.展开更多
AIM:To develop an artificial intelligence(AI)diagnosis model based on deep learning(DL)algorithm to diagnose different types of retinal vein occlusion(RVO)by recognizing color fundus photographs(CFPs).METHODS:Totally ...AIM:To develop an artificial intelligence(AI)diagnosis model based on deep learning(DL)algorithm to diagnose different types of retinal vein occlusion(RVO)by recognizing color fundus photographs(CFPs).METHODS:Totally 914 CFPs of healthy people and patients with RVO were collected as experimental data sets,and used to train,verify and test the diagnostic model of RVO.All the images were divided into four categories[normal,central retinal vein occlusion(CRVO),branch retinal vein occlusion(BRVO),and macular retinal vein occlusion(MRVO)]by three fundus disease experts.Swin Transformer was used to build the RVO diagnosis model,and different types of RVO diagnosis experiments were conducted.The model’s performance was compared to that of the experts.RESULTS:The accuracy of the model in the diagnosis of normal,CRVO,BRVO,and MRVO reached 1.000,0.978,0.957,and 0.978;the specificity reached 1.000,0.986,0.982,and 0.976;the sensitivity reached 1.000,0.955,0.917,and 1.000;the F1-Sore reached 1.000,0.9550.943,and 0.887 respectively.In addition,the area under curve of normal,CRVO,BRVO,and MRVO diagnosed by the diagnostic model were 1.000,0.900,0.959 and 0.970,respectively.The diagnostic results were highly consistent with those of fundus disease experts,and the diagnostic performance was superior.CONCLUSION:The diagnostic model developed in this study can well diagnose different types of RVO,effectively relieve the work pressure of clinicians,and provide help for the follow-up clinical diagnosis and treatment of RVO patients.展开更多
In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbo...In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbolic relationship,i.e.,the ORR current excluding the effect of other variables increases with proton concentration and then tends to a constant value.We consider that this is caused by the limitation of ORR kinetics by the trace oxygen concentration in the solution,which determines the upper limit of ORR kinetics.A model of effective concentration is further proposed for rectangular hyperbolic relationships:when the reactant concentration is high enough to reach a critical saturation concentration,the effective reactant concentration will become a constant value.This could be due to the limited concentration of a certain reactant for reactions involving more than one reactant or the limited number of active sites available on the catalyst.Our study provides new insights into the kinetics of electrocatalytic reactions,and it is important for the proper evaluation of catalyst activity and the study of structureperformance relationships.展开更多
Maillard reaction(MR)is a non-enzymatic browning reaction commonly seen in food processing,which occurs between reducing sugars and compounds with amino groups.Despite certain advantages based on Maillard reaction pro...Maillard reaction(MR)is a non-enzymatic browning reaction commonly seen in food processing,which occurs between reducing sugars and compounds with amino groups.Despite certain advantages based on Maillard reaction products(MRPs)found in some food for health and storage application have appeared,however,the MR occurring in human physiological environment can produce advanced glycation end products(AGEs)by non-enzymatic modification of macromolecules such as proteins,lipids and nucleic acid,which could change the structure and functional activity of the molecules themselves.In this review,we take AGEs as our main object,on the one hand,discuss physiologic aging,that is,age-dependent covalent cross-linking and modification of proteins such as collagen that occur in eyes and skin containing connective tissue.On the other hand,pathological aging associated with autoimmune and inflammatory diseases,neurodegenerative diseases,diabetes and diabetic nephropathy,cardiovascular diseases and bone degenerative diseases have been mainly proposed.Based on the series of adverse effects of accelerated aging and disease pathologies caused by MRPs,the possible harm caused by some MR can be slowed down or inhibited by artificial drug intervention,dietary pattern and lifestyle control.It also stimulates people's curiosity to continue to explore the potential link between the MR and human aging and health,which should be paid more attention to for the development of life sciences.展开更多
Exposure to plants has been reported to promote health and reduce stress,and plant color has direct impacts on physical and mental health.We used images of common types of tended plant communities in Shenyang,China,wi...Exposure to plants has been reported to promote health and reduce stress,and plant color has direct impacts on physical and mental health.We used images of common types of tended plant communities in Shenyang,China,with combinations of yellow,green,and red foliage,as experimental stimuli.A total of 27 images were used as visual stimuli.We used electroencephalography to measureαwave activity(8-13 Hz)in 40 subjects while they viewed visual stimuli.These data were combined with subjective questionnaire data to analyze the relaxing effect of images of tended plant communities with different color types and proportions on people.The results revealed that,although there were slight differences between the electroencephalography and psychological findings,women were significantly more relaxed than men after viewing the images.Physiological and psychological responses varied with the types and proportions of colors in the tended plant communities:those of foliage with combinations of two or three colors induced stronger responses than images with a single color.Specifically,(1)for one-color plant communities,green or yellow plant communities induced a stronger relaxation effect than red plant communities;(2)for two-color plant communities,the optimal color proportion was 55%+45%,and the green+yellow and green+red color combinations induced a stronger relaxation effect;(3)for three-color plant communities,the relaxation effect was strongest when the color proportion was 55%green+25%yellow+20%red.These data would provide a plant color matching in future plant landscape design,which may be helpful for creating healthy and relaxing environments.展开更多
Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial ...Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial information and is sensitive to the segmentation parameter.In this study,we first present an efficient algorithm that incorporates spatial information into the Gaussian mixture model(GMM)without parameter estimation.The proposed model highlights the residual region with considerable information and constructs color saliency.Second,we incorporate the content-based color saliency as spatial information in the Gaussian mixture model.The segmentation is performed by clustering each pixel into an appropriate component according to the expectation maximization and maximum criteria.Finally,the random color histogram assigns a unique color to each cluster and creates an attractive color by default for segmentation.A random color histogram serves as an effective tool for data visualization and is instrumental in the creation of generative art,facilitating both analytical and aesthetic objectives.For experiments,we have used the Berkeley segmentation dataset BSDS-500 and Microsoft Research in Cambridge dataset.In the study,the proposed model showcases notable advancements in unsupervised image segmentation,with probabilistic rand index(PRI)values reaching 0.80,BDE scores as low as 12.25 and 12.02,compactness variations at 0.59 and 0.7,and variation of information(VI)reduced to 2.0 and 1.49 for the BSDS-500 and MSRC datasets,respectively,outperforming current leading-edge methods and yielding more precise segmentations.展开更多
The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nan...The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nanoparticle,interfacial crystallization and dissolution are the main characteristics.The reaction degree of Al particle first increases linearly and then logarithmically with time driven by rapid mechanical mixing and following dissolution.The reaction rate increases with the decrease of particle diameter,however,the reaction is seriously hindered by interfacial crystallization when the diameter is lower than 9 nm in our simulations.Meanwhile,we found a negative exponential growth in the fraction of crystallized Al atoms,and the crystallinity of B2-NiAl(up to 20%)is positively correlated with the specific surface area of Al particle.This can be attributed to the formation mechanism of B2-NiAl by structural evolution of finite mixing layer near the collapsed interface.For shock melting of both Al particle and Ni matrix,the liquid-liquid phase inter-diffusion is the main reaction mechanism that can be enhanced by the formation of internal jet.In addition,the enhanced diffusion is manifested in the logarithmic growth law of mean square displacement,which results in an almost constant reaction rate similar to the mechanical mixing process.展开更多
Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability o...Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability of the organosulfur,as well as the mass-transfer resistance that exists in multiphase catalysis,have often limited the catalytic application of Cu-MOFs in C-S coupling reactions.In this paper,a Cu-MOFs catalyst modified by cetyltrimethylammonium bromide(CTAB)was designed to enhance mass transfer by increasing the adsorption of organic substrates using the long alkanes of CTAB.Concurrently,elemental sulfur was used to replace organosulfur to achieve a highly efficient and atom-economical multicomponent C-S coupling reaction.展开更多
BACKGROUND As one of the fatal diseases with high incidence,lung cancer has seriously endangered public health and safety.Elderly patients usually have poor self-care and are more likely to show a series of psychologi...BACKGROUND As one of the fatal diseases with high incidence,lung cancer has seriously endangered public health and safety.Elderly patients usually have poor self-care and are more likely to show a series of psychological problems.AIM To investigate the effectiveness of the initial check,information exchange,final accuracy check,reaction(IIFAR)information care model on the mental health status of elderly patients with lung cancer.METHODS This study is a single-centre study.We randomly recruited 60 elderly patients with lung cancer who attended our hospital from January 2021 to January 2022.These elderly patients with lung cancer were randomly divided into two groups,with the control group taking the conventional propaganda and education and the observation group taking the IIFAR information care model based on the conventional care protocol.The differences in psychological distress,anxiety and depression,life quality,fatigue,and the locus of control in psychology were compared between these two groups,and the causes of psychological distress were analyzed.RESULTS After the intervention,Distress Thermometer,Hospital Anxiety and Depression Scale(HADS)for anxiety and the HADS for depression,Revised Piper’s Fatigue Scale,and Chance Health Locus of Control scores were lower in the observation group compared to the pre-intervention period in the same group and were significantly lower in the observation group compared to those of the control group(P<0.05).After the intervention,Quality of Life Questionnaire Core 30(QLQ-C30),Internal Health Locus of Control,and Powerful Others Health Locus of Control scores were significantly higher in the observation and the control groups compared to the pre-intervention period in their same group,and QLQ-C30 scores were significantly higher in the observation group compared to those of the control group(P<0.05).CONCLUSION The IIFAR information care model can help elderly patients with lung cancer by reducing their anxiety and depression,psychological distress,and fatigue,improving their tendencies on the locus of control in psychology,and enhancing their life qualities.展开更多
Nickel-rich layered oxide LiNi_(x)Co_(y)MnzO_(2)(NCM,x+y+z=1)is the most promising cathode material for high-energy lithium-ion batteries.However,conventional synthesis methods are limited by the slow heating rate,slu...Nickel-rich layered oxide LiNi_(x)Co_(y)MnzO_(2)(NCM,x+y+z=1)is the most promising cathode material for high-energy lithium-ion batteries.However,conventional synthesis methods are limited by the slow heating rate,sluggish reaction dynamics,high energy consumption,and long reaction time.To overcome these chal-lenges,we first employed a high-temperature shock(HTS)strategy for fast synthesis of the NCM,and the approaching ultimate reaction rate of solid phase transition is deeply investigated for the first time.In the HTS process,ultrafast average reaction rate of phase transition from Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_(2) to Li-containing oxides is 66.7(%s^(-1)),that is,taking only 1.5 s.An ultrahigh heating rate leads to fast reaction kinetics,which induces the rapid phase transition of NCM cathodes.The HTS-synthesized nickel-rich layered oxides perform good cycling performances(94%for NCM523,94%for NCM622,and 80%for NCM811 after 200 cycles at 4.3 V).These findings might also assist to pave the way for preparing effectively Ni-rich layered oxides for lithium-ion batteries.展开更多
Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However...Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However,the underlying microscopic mechanism remains ambiguous.In this work,the multiscale reaction density functional theory is applied to explore the effect of 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_(6)])solvent on the reaction of cyclopentadiene(CP)with acrolein,methyl acrylate,or acrylonitrile.By analyzing the free energy landscape during the reaction,it is found that the polarization effect has a relatively small influence,while the solvation effect makes both the activation free energy and reaction free energy decrease.In addition,the rearrangement of local solvent structure shows that the cation spatial distribution responds more evidently to the reaction than the anion,and this indicates that the cation plays a dominant role in the solvation effect and so as to affect the reaction rates and selectivity of the DA reactions.展开更多
Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely use...Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely used to study the reaction mechanism of the hydrogen evolution reaction(HER),but the calculation results need to be supported by experimental results and direct evidence to confirm the mechanistic insights.In this review,we discuss the fundamental principles of the in situ spectroscopic strategy and a theoretical model for a mechanistic understanding of the HER.In addition,we investigate recent studies by in situ Fourier transform infrared(FTIR),Raman spectroscopy,and X-ray absorption spectroscopy(XAS) and cover new findings that occur at the catalyst-electrolyte interface during HER.These spectroscopic strategies provide practical ways to elucidate catalyst phase,reaction intermediate,catalyst-electrolyte interface,intermediate binding energy,metal valency state,and coordination environment during HER.展开更多
N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher ...N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher than the theoretical oxida-tion potential of carbon,possibly leading to the oxidation of carbon materials.Consequently,the infl uence of the structural oxidation evolution on ORR performance and the real active sites are not clear.In this study,we discover a two-step oxida-tion process of N-doped carbon during the ORR.The fi rst oxidation process is caused by the applied potential and bubbling oxygen during the ORR,leading to the oxidative dissolution of N and the formation of abundant oxygen-containing functional groups.This oxidation process also converts the reaction path from the four-electron(4e)ORR to the two-electron(2e)ORR.Subsequently,the enhanced 2e ORR generates oxidative H_(2)O_(2),which initiates the second stage of oxidation to some newly formed oxygen-containing functional groups,such as quinones to dicarboxyls,further diversifying the oxygen-containing functional groups and making carboxyl groups as the dominant species.We also reveal the synergistic eff ect of multiple oxygen-containing functional groups by providing additional opportunities to access active sites with optimized adsorption of OOH*,thus leading to high effi ciency and durability in electrocatalytic H_(2)O_(2) production.展开更多
The yellow-colored line of pearl oyster Pinctada fucata martensii displays a yellow prismatic layer and a white nacreous layer that can be used as an ideal model for research on shell color formation.Micro-Raman spect...The yellow-colored line of pearl oyster Pinctada fucata martensii displays a yellow prismatic layer and a white nacreous layer that can be used as an ideal model for research on shell color formation.Micro-Raman spectroscopy and transcriptome analyses were performed to explore the potential molecular mechanism underlying the phenotype differentiation.The micro-Raman spectroscopy results indicate that the prismatic layer exhibits distinct characteristic peaks of carotenoids,while these peaks are not prominent in the nacreous layer.In the transcriptome comparison of the central zone of mantle and mantle edge tissue,which function in nacreous and prismatic layer formation,respectively,935 significantly differentially expressed genes(DEGs)were identified,with 385 genes upregulated and 227 genes downregulated(|log_(2)(Fold change)|>1 and false discovery rate<0.05)in the mantle edge tissue.Among these genes,some were associated with melanoma/melanogenesis,such as tyrosinase,zinc metalloprotease,glutathione S-transferase,and ATP-binding cassette sub-family;some were associated with the carotenoid-related pathway,including scavenger receptors,cytochrome P450 and lipoprotein receptor.Genes associated with porphyrin metabolism,including porphobilinogen deaminase,and copper/zinc superoxide dismutase,and genes associated with shell matrix protein,including amorphous calcium carbonate binding protein,shematrin,PIF,and collagen,also exhibited significantly different expressions.It is speculated that the different colours between prismatic layer and nacreous layer in the yellow-colored line of P.f.martensii might be resulted from melanin,carotenoids and porphyrin metabolism,while genes related to shell structure and biomineralization might also affect coloration.Our results provide new insights to understand the mechanism of shell color formation in mollusca.展开更多
Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membr...Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR.展开更多
基金support from the National Key Research and Development Program of China (2020YFA0714504,2019YFA0709100).
文摘High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.
基金supported by the Taishan Scholar Program of Shandong Province,China (tsqn202211162)the National Natural Science Foundation of China (22102079)the Natural Science Foundation of Shandong Province of China (ZR2021YQ10,ZR2022QB163)。
文摘The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.
基金the staff at Beamline (BL08U1-A and BL11B)of the Shanghai Synchrotron Radiation Facility (SSRF)the support from the National Key Research&Development Program of China (2022YFB3803700)+2 种基金the National Natural Science Foundation of China (52171186)the support through the Overseas Outstanding Youth Fund and Shanghai Pujiang Talent Project (21PJ1408500)the financial support from the Center of Hydrogen Science,Shanghai Jiao Tong University。
文摘High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies.Herein,we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction(OER)for alkaline electrolysis,which yields current density of 10 mA cm^(-2)at an overpotential of 215 mV in 0.1 M KOH electrolyte.The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity.Raman spectra revealed that the catalyst underwent structure reconstruction during OER,evolving into oxyhydroxide,which was the active site proceeding OER in alkaline electrolyte.In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst.This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability.These findings provide promising strategies for the rational design of nonnoble metal OER catalysts.
基金supported by the National Natural Science Foundation of China(32060430 and 31971840)the Research Initiation Fund of Hainan University,China(KYQD(ZR)19104)。
文摘Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51902101 and 21875203)the Natural Science Foundation of Hunan Province(Nos.2021JJ40044 and 2023JJ50287)Natural Science Foundation of Jiangsu Province(No.BK20201381).
文摘Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.
基金Supported by Shenzhen Fund for Guangdong Provincial High-level Clinical Key Specialties(No.SZGSP014)Sanming Project of Medicine in Shenzhen(No.SZSM202011015)Shenzhen Science and Technology Planning Project(No.KCXFZ20211020163813019).
文摘AIM:To develop an artificial intelligence(AI)diagnosis model based on deep learning(DL)algorithm to diagnose different types of retinal vein occlusion(RVO)by recognizing color fundus photographs(CFPs).METHODS:Totally 914 CFPs of healthy people and patients with RVO were collected as experimental data sets,and used to train,verify and test the diagnostic model of RVO.All the images were divided into four categories[normal,central retinal vein occlusion(CRVO),branch retinal vein occlusion(BRVO),and macular retinal vein occlusion(MRVO)]by three fundus disease experts.Swin Transformer was used to build the RVO diagnosis model,and different types of RVO diagnosis experiments were conducted.The model’s performance was compared to that of the experts.RESULTS:The accuracy of the model in the diagnosis of normal,CRVO,BRVO,and MRVO reached 1.000,0.978,0.957,and 0.978;the specificity reached 1.000,0.986,0.982,and 0.976;the sensitivity reached 1.000,0.955,0.917,and 1.000;the F1-Sore reached 1.000,0.9550.943,and 0.887 respectively.In addition,the area under curve of normal,CRVO,BRVO,and MRVO diagnosed by the diagnostic model were 1.000,0.900,0.959 and 0.970,respectively.The diagnostic results were highly consistent with those of fundus disease experts,and the diagnostic performance was superior.CONCLUSION:The diagnostic model developed in this study can well diagnose different types of RVO,effectively relieve the work pressure of clinicians,and provide help for the follow-up clinical diagnosis and treatment of RVO patients.
基金supported by the National Natural Science Foundation of China(21972131)。
文摘In this study,we systematically investigated the effect of proton concentration on the kinetics of the oxygen reduction reaction(ORR)on Pt(111)in acidic solutions.Experimental results demonstrate a rectangular hyperbolic relationship,i.e.,the ORR current excluding the effect of other variables increases with proton concentration and then tends to a constant value.We consider that this is caused by the limitation of ORR kinetics by the trace oxygen concentration in the solution,which determines the upper limit of ORR kinetics.A model of effective concentration is further proposed for rectangular hyperbolic relationships:when the reactant concentration is high enough to reach a critical saturation concentration,the effective reactant concentration will become a constant value.This could be due to the limited concentration of a certain reactant for reactions involving more than one reactant or the limited number of active sites available on the catalyst.Our study provides new insights into the kinetics of electrocatalytic reactions,and it is important for the proper evaluation of catalyst activity and the study of structureperformance relationships.
基金financially supported by grants from the National Natural Science Foundation of China (82170873,81871095)the National Natural Science Foundation of China (81974503)the Tsinghua University Spring Breeze Fund (20211080005)。
文摘Maillard reaction(MR)is a non-enzymatic browning reaction commonly seen in food processing,which occurs between reducing sugars and compounds with amino groups.Despite certain advantages based on Maillard reaction products(MRPs)found in some food for health and storage application have appeared,however,the MR occurring in human physiological environment can produce advanced glycation end products(AGEs)by non-enzymatic modification of macromolecules such as proteins,lipids and nucleic acid,which could change the structure and functional activity of the molecules themselves.In this review,we take AGEs as our main object,on the one hand,discuss physiologic aging,that is,age-dependent covalent cross-linking and modification of proteins such as collagen that occur in eyes and skin containing connective tissue.On the other hand,pathological aging associated with autoimmune and inflammatory diseases,neurodegenerative diseases,diabetes and diabetic nephropathy,cardiovascular diseases and bone degenerative diseases have been mainly proposed.Based on the series of adverse effects of accelerated aging and disease pathologies caused by MRPs,the possible harm caused by some MR can be slowed down or inhibited by artificial drug intervention,dietary pattern and lifestyle control.It also stimulates people's curiosity to continue to explore the potential link between the MR and human aging and health,which should be paid more attention to for the development of life sciences.
基金This work was supported by Postgraduate Education Reform Project of Liaoning Province(LNYJG2022253)National Natural Science Foundation of China(31470031).
文摘Exposure to plants has been reported to promote health and reduce stress,and plant color has direct impacts on physical and mental health.We used images of common types of tended plant communities in Shenyang,China,with combinations of yellow,green,and red foliage,as experimental stimuli.A total of 27 images were used as visual stimuli.We used electroencephalography to measureαwave activity(8-13 Hz)in 40 subjects while they viewed visual stimuli.These data were combined with subjective questionnaire data to analyze the relaxing effect of images of tended plant communities with different color types and proportions on people.The results revealed that,although there were slight differences between the electroencephalography and psychological findings,women were significantly more relaxed than men after viewing the images.Physiological and psychological responses varied with the types and proportions of colors in the tended plant communities:those of foliage with combinations of two or three colors induced stronger responses than images with a single color.Specifically,(1)for one-color plant communities,green or yellow plant communities induced a stronger relaxation effect than red plant communities;(2)for two-color plant communities,the optimal color proportion was 55%+45%,and the green+yellow and green+red color combinations induced a stronger relaxation effect;(3)for three-color plant communities,the relaxation effect was strongest when the color proportion was 55%green+25%yellow+20%red.These data would provide a plant color matching in future plant landscape design,which may be helpful for creating healthy and relaxing environments.
基金supported by the MOE(Ministry of Education of China)Project of Humanities and Social Sciences(23YJAZH169)the Hubei Provincial Department of Education Outstanding Youth Scientific Innovation Team Support Foundation(T2020017)Henan Foreign Experts Project No.HNGD2023027.
文摘Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial information and is sensitive to the segmentation parameter.In this study,we first present an efficient algorithm that incorporates spatial information into the Gaussian mixture model(GMM)without parameter estimation.The proposed model highlights the residual region with considerable information and constructs color saliency.Second,we incorporate the content-based color saliency as spatial information in the Gaussian mixture model.The segmentation is performed by clustering each pixel into an appropriate component according to the expectation maximization and maximum criteria.Finally,the random color histogram assigns a unique color to each cluster and creates an attractive color by default for segmentation.A random color histogram serves as an effective tool for data visualization and is instrumental in the creation of generative art,facilitating both analytical and aesthetic objectives.For experiments,we have used the Berkeley segmentation dataset BSDS-500 and Microsoft Research in Cambridge dataset.In the study,the proposed model showcases notable advancements in unsupervised image segmentation,with probabilistic rand index(PRI)values reaching 0.80,BDE scores as low as 12.25 and 12.02,compactness variations at 0.59 and 0.7,and variation of information(VI)reduced to 2.0 and 1.49 for the BSDS-500 and MSRC datasets,respectively,outperforming current leading-edge methods and yielding more precise segmentations.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.12132003)State Key Laboratory of Explosion Science and Technology(Grant No.QNKT20-07)。
文摘The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nanoparticle,interfacial crystallization and dissolution are the main characteristics.The reaction degree of Al particle first increases linearly and then logarithmically with time driven by rapid mechanical mixing and following dissolution.The reaction rate increases with the decrease of particle diameter,however,the reaction is seriously hindered by interfacial crystallization when the diameter is lower than 9 nm in our simulations.Meanwhile,we found a negative exponential growth in the fraction of crystallized Al atoms,and the crystallinity of B2-NiAl(up to 20%)is positively correlated with the specific surface area of Al particle.This can be attributed to the formation mechanism of B2-NiAl by structural evolution of finite mixing layer near the collapsed interface.For shock melting of both Al particle and Ni matrix,the liquid-liquid phase inter-diffusion is the main reaction mechanism that can be enhanced by the formation of internal jet.In addition,the enhanced diffusion is manifested in the logarithmic growth law of mean square displacement,which results in an almost constant reaction rate similar to the mechanical mixing process.
基金support from the National Natural Science Foundation of China(22078130)the Fundamental Research Funds for the Central Universities(1042050205225990/010)Starting Research Fund of Qingyuan Innovation Laboratory(00523001).
文摘Copper-based metal-organic frameworks(Cu-MOFs)are a promising multiphase catalyst for catalyzing C-S coupling reactions by virtue of their diverse structures and functions.However,the unpleasant odor and instability of the organosulfur,as well as the mass-transfer resistance that exists in multiphase catalysis,have often limited the catalytic application of Cu-MOFs in C-S coupling reactions.In this paper,a Cu-MOFs catalyst modified by cetyltrimethylammonium bromide(CTAB)was designed to enhance mass transfer by increasing the adsorption of organic substrates using the long alkanes of CTAB.Concurrently,elemental sulfur was used to replace organosulfur to achieve a highly efficient and atom-economical multicomponent C-S coupling reaction.
文摘BACKGROUND As one of the fatal diseases with high incidence,lung cancer has seriously endangered public health and safety.Elderly patients usually have poor self-care and are more likely to show a series of psychological problems.AIM To investigate the effectiveness of the initial check,information exchange,final accuracy check,reaction(IIFAR)information care model on the mental health status of elderly patients with lung cancer.METHODS This study is a single-centre study.We randomly recruited 60 elderly patients with lung cancer who attended our hospital from January 2021 to January 2022.These elderly patients with lung cancer were randomly divided into two groups,with the control group taking the conventional propaganda and education and the observation group taking the IIFAR information care model based on the conventional care protocol.The differences in psychological distress,anxiety and depression,life quality,fatigue,and the locus of control in psychology were compared between these two groups,and the causes of psychological distress were analyzed.RESULTS After the intervention,Distress Thermometer,Hospital Anxiety and Depression Scale(HADS)for anxiety and the HADS for depression,Revised Piper’s Fatigue Scale,and Chance Health Locus of Control scores were lower in the observation group compared to the pre-intervention period in the same group and were significantly lower in the observation group compared to those of the control group(P<0.05).After the intervention,Quality of Life Questionnaire Core 30(QLQ-C30),Internal Health Locus of Control,and Powerful Others Health Locus of Control scores were significantly higher in the observation and the control groups compared to the pre-intervention period in their same group,and QLQ-C30 scores were significantly higher in the observation group compared to those of the control group(P<0.05).CONCLUSION The IIFAR information care model can help elderly patients with lung cancer by reducing their anxiety and depression,psychological distress,and fatigue,improving their tendencies on the locus of control in psychology,and enhancing their life qualities.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.92372107 and 52171219).
文摘Nickel-rich layered oxide LiNi_(x)Co_(y)MnzO_(2)(NCM,x+y+z=1)is the most promising cathode material for high-energy lithium-ion batteries.However,conventional synthesis methods are limited by the slow heating rate,sluggish reaction dynamics,high energy consumption,and long reaction time.To overcome these chal-lenges,we first employed a high-temperature shock(HTS)strategy for fast synthesis of the NCM,and the approaching ultimate reaction rate of solid phase transition is deeply investigated for the first time.In the HTS process,ultrafast average reaction rate of phase transition from Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_(2) to Li-containing oxides is 66.7(%s^(-1)),that is,taking only 1.5 s.An ultrahigh heating rate leads to fast reaction kinetics,which induces the rapid phase transition of NCM cathodes.The HTS-synthesized nickel-rich layered oxides perform good cycling performances(94%for NCM523,94%for NCM622,and 80%for NCM811 after 200 cycles at 4.3 V).These findings might also assist to pave the way for preparing effectively Ni-rich layered oxides for lithium-ion batteries.
基金supported by the National Natural Science Foundation of China(22168002,22108070,21878078)the Natural Science Foundation of Guangxi Province(2020GXNSFAA159119)+2 种基金the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2021Z012)the Open Fund of the State Key Laboratory of Molecular Reaction Dynamics in DICP(SKLMRD-K202106)the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)。
文摘Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However,the underlying microscopic mechanism remains ambiguous.In this work,the multiscale reaction density functional theory is applied to explore the effect of 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_(6)])solvent on the reaction of cyclopentadiene(CP)with acrolein,methyl acrylate,or acrylonitrile.By analyzing the free energy landscape during the reaction,it is found that the polarization effect has a relatively small influence,while the solvation effect makes both the activation free energy and reaction free energy decrease.In addition,the rearrangement of local solvent structure shows that the cation spatial distribution responds more evidently to the reaction than the anion,and this indicates that the cation plays a dominant role in the solvation effect and so as to affect the reaction rates and selectivity of the DA reactions.
基金the immense support provided by the National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIT)(RS-2023–00210114)the National R&D Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(2021M3D1A2051636)。
文摘Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely used to study the reaction mechanism of the hydrogen evolution reaction(HER),but the calculation results need to be supported by experimental results and direct evidence to confirm the mechanistic insights.In this review,we discuss the fundamental principles of the in situ spectroscopic strategy and a theoretical model for a mechanistic understanding of the HER.In addition,we investigate recent studies by in situ Fourier transform infrared(FTIR),Raman spectroscopy,and X-ray absorption spectroscopy(XAS) and cover new findings that occur at the catalyst-electrolyte interface during HER.These spectroscopic strategies provide practical ways to elucidate catalyst phase,reaction intermediate,catalyst-electrolyte interface,intermediate binding energy,metal valency state,and coordination environment during HER.
基金We acknowledge the National Natural Science Foundation of China(No.22275134)for fi nancial support.
文摘N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher than the theoretical oxida-tion potential of carbon,possibly leading to the oxidation of carbon materials.Consequently,the infl uence of the structural oxidation evolution on ORR performance and the real active sites are not clear.In this study,we discover a two-step oxida-tion process of N-doped carbon during the ORR.The fi rst oxidation process is caused by the applied potential and bubbling oxygen during the ORR,leading to the oxidative dissolution of N and the formation of abundant oxygen-containing functional groups.This oxidation process also converts the reaction path from the four-electron(4e)ORR to the two-electron(2e)ORR.Subsequently,the enhanced 2e ORR generates oxidative H_(2)O_(2),which initiates the second stage of oxidation to some newly formed oxygen-containing functional groups,such as quinones to dicarboxyls,further diversifying the oxygen-containing functional groups and making carboxyl groups as the dominant species.We also reveal the synergistic eff ect of multiple oxygen-containing functional groups by providing additional opportunities to access active sites with optimized adsorption of OOH*,thus leading to high effi ciency and durability in electrocatalytic H_(2)O_(2) production.
基金supported by the Science and Technology Program of Guangdong Province (No.2022A1515010030)the National Natural Science Foundation of China (No.32102817)+3 种基金the Program for Sientific Research Start-up Funds of Guangdong Ocean University (No.060302022304)the Department of Education of Guangdong Province (Nos.2020ZDZX1045 and 2021KCXTD026)the Earmarked Fund for CARS-49the Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams (No.2023KJ146)。
文摘The yellow-colored line of pearl oyster Pinctada fucata martensii displays a yellow prismatic layer and a white nacreous layer that can be used as an ideal model for research on shell color formation.Micro-Raman spectroscopy and transcriptome analyses were performed to explore the potential molecular mechanism underlying the phenotype differentiation.The micro-Raman spectroscopy results indicate that the prismatic layer exhibits distinct characteristic peaks of carotenoids,while these peaks are not prominent in the nacreous layer.In the transcriptome comparison of the central zone of mantle and mantle edge tissue,which function in nacreous and prismatic layer formation,respectively,935 significantly differentially expressed genes(DEGs)were identified,with 385 genes upregulated and 227 genes downregulated(|log_(2)(Fold change)|>1 and false discovery rate<0.05)in the mantle edge tissue.Among these genes,some were associated with melanoma/melanogenesis,such as tyrosinase,zinc metalloprotease,glutathione S-transferase,and ATP-binding cassette sub-family;some were associated with the carotenoid-related pathway,including scavenger receptors,cytochrome P450 and lipoprotein receptor.Genes associated with porphyrin metabolism,including porphobilinogen deaminase,and copper/zinc superoxide dismutase,and genes associated with shell matrix protein,including amorphous calcium carbonate binding protein,shematrin,PIF,and collagen,also exhibited significantly different expressions.It is speculated that the different colours between prismatic layer and nacreous layer in the yellow-colored line of P.f.martensii might be resulted from melanin,carotenoids and porphyrin metabolism,while genes related to shell structure and biomineralization might also affect coloration.Our results provide new insights to understand the mechanism of shell color formation in mollusca.
基金finically supported by the National Natural Science Foundation of China(22075055)the Guangxi Science and Technology Project(AB16380030)。
文摘Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR.