The color changes of one representative FCC gasoline were studied. The red substance in the FCC gasoline was concentrated and separated by chromatography and analyzed by elemental analysis and gas chromatography-mass ...The color changes of one representative FCC gasoline were studied. The red substance in the FCC gasoline was concentrated and separated by chromatography and analyzed by elemental analysis and gas chromatography-mass spectrometry (GC-MS). The main components of the red substance were found to be aromatic amines. Complexes formed from quinones and aromatic amines are the reason why gasoline being red, and acids can destroy the complex by reaction with aromatic amines leading to decoloration of red gasoline. A mechanism for the color change of gasoline is proposed.展开更多
Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue therm...Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue thermally activated delayed fluorescence(TADF) layer using 9,9-dimethyl-9,10-dihydroacridine-diphenylsulfone(DMAC-DPS) and an ultrathin non-doped yellow phosphorescence layer employing bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2']iridium(acetylacetonate)((tbt)_2Ir(acac)).Two kinds of materials of 4,7-diphenyl-1,10-phenanthroline(Bphen) and 1,3,5-tris(2-Nphenylbenzimidazolyl) benzene(TPBi) are selected as the electron transporting layer(ETL),and the thickness of yellow EML is adjusted to optimize device performance.The device based on a 0.3-nm-thick yellow EML and Bphen exhibits high color stability with a slight Commission International de l'Eclairage(CIE) coordinates variation of(0.017,0.009) at a luminance ranging from 52 cd/m^2 to 6998 cd/m^2.The TPBi-based device yields a high efficiency with a maximum external quantum efficiency(EQE),current efficiency,and power efficiency of 10%,21.1 cd/A,and 21.3 lm/W,respectively.The ultrathin yellow EML suppresses hole trapping and short-radius Dexter energy transfer,so that Forster energy transfer(FRET)from DMAC-DPS to(tbt)_2Ir(acac) is dominant,which is beneficial to keep the color stable.The employment of TPBi with higher triplet excited state effectively alleviates the triplet exciton quenching by ETL to improve device efficiency.展开更多
A series of white phosphorescent OLED devices with buffer layer and multiple dopant structure is investigated in order to obtain better electro-optic performances and color stability. The color coordinate and color st...A series of white phosphorescent OLED devices with buffer layer and multiple dopant structure is investigated in order to obtain better electro-optic performances and color stability. The color coordinate and color stability are related to the location of multiple dopants layer, and the optimized location can compensate for the change of the blue emission intensity under a high voltage and stabilize the spectrum. The electro-optic performances and color stability can be further improved by changing the composition and thickness of the buffer layer between the emitting layer and the electron transport layer.In device B2, the distance from multiple dopant layer to buffer layer is 2 nm and the thickness of buffer layer is 5 nm,the maximum luminance, current density, and power efficiency can reach 9091 cd/m^2, 364.5 mA/cm^2, and 26.74 lm/W,respectively. The variation of international commission on the illumination(CIE) coordinate of device B2 with voltage increasing from 4 V to 7 V is only(0.006, 0.004).展开更多
We fabricate white phosphorescent organic light-emitting diodes (PHOLEDs) with three dopants and double emissive layer (EML) to achieve color stability. The white PHOLEDs use FIrpic dopant for blue EML (B- EML),...We fabricate white phosphorescent organic light-emitting diodes (PHOLEDs) with three dopants and double emissive layer (EML) to achieve color stability. The white PHOLEDs use FIrpic dopant for blue EML (B- EML), and Ir(ppy)3:Ir(piq)3 dopants for green:red EML (GR-EML) with N,N'-dicarbazolyl-3, 5-benzene (mCP) as host material. Thicknesses of B-EML and GR-EML are adjusted to form a narrow recombination zone at two EML's interface and charge trapping happens in EML according to wide highest occupied molecular orbital and/or lowest unoccupied molecular orbital energy band gap of mCP and smaller energy band gap of dopants. The total thickness of both EMLs is fixed at 30 nm in the device structure of ITO (150 nm)/MoO3 (2 nm)/N,N'-diphenyl-N,N'-bis(1-naphthyl-phenyl)-(1,1″-biphenyl)-4, 4'-diamine (70 nm)/ meP:Firpic-8.0% (12 nm)/mCP:Ir(ppy)3-3.0%:Ir(piq)3-1.5% (18 nm)/2″,2',2"'-(1,3,5-benzinetriyl)-tris(1- phenyl-l-H-benzimidazole) (30 nm)/8-hydroxyquinolinolato-lithium (2 nm)/A1 (120 nm). White PHOLED shows 18.25 cd/A of luminous efficiency and white color coordinates of (0.358 and 0.378) at 5000 cd/m2 and color stability with slight CIExy change of (0.028 and 0.002) as increasing luminance from 1000 to 5000 cd/m^2.展开更多
Introduction: The stability of orthodontic brackets throughout orthodontic treatment plays a critical role in the treatment’s effectiveness. The present in vitro study was designed to assess the impact of various die...Introduction: The stability of orthodontic brackets throughout orthodontic treatment plays a critical role in the treatment’s effectiveness. The present in vitro study was designed to assess the impact of various dietary components on the performance of orthodontic brackets. Methods: Metal orthodontic brackets were bonded to 66 extracted anterior teeth divided into groups based on the solution type: Milk, Gatorade, Cold Coffee, and a control group using water. Each group consisted of 20 teeth except for the control group, which included six teeth. The bracketed teeth were submerged in their respective solutions for 15 minutes three times daily at different intervals to mimic an in vivo environment and were stored in artificial saliva at room temperature (23?C). The specimens underwent artificial aging through 10,000 cycles of thermocycling (representing one clinical year) between 5?C and 55?C. Shade measurements were taken using a VITA Easy Shade device, capturing the classic shade and L*, a*, and b* values. Delta E values were calculated immediately post-bonding and after 7 days, 1 month, 1, and 2 clinical years. The shear bond strength of each bracket was measured using an ultra-tester machine. Results: After two clinical years, significant differences in ΔE color values were observed across all groups, with the most substantial change noted in teeth immersed in cold coffee. Brackets submerged in milk demonstrated lower shear bond strength than other solutions, whereas the control group exhibited the highest shear bond strength (P = 0.01). Conclusion: The study indicates that dietary components significantly influence tooth color stability and the shear bond strength of orthodontic brackets, underscoring the importance of considering these factors in orthodontic treatment planning.展开更多
High-brightness and color-stable two-wavelength hybrid white organic light emitting diodes (HWOLEDs) with the configuration of indium tin oxide (ITO)/ N, N, N, N-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD):...High-brightness and color-stable two-wavelength hybrid white organic light emitting diodes (HWOLEDs) with the configuration of indium tin oxide (ITO)/ N, N, N, N-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD): tetrafluoro-tetracyanoqino dimethane (F4-TCNQ)/N,N-di(naphthalene-1-yl)-N,N-diphenyl-benzidine (NPB)/ 4,4-N,N-dicarbazolebiphenyl (CBP): iridium (III) diazine complexes (MPPZ) 2 Ir(acac)/NPB/2-methyl-9,10-di(2-naphthyl)anthracene (MADN): p-bis(p-N,N-di-phenyl-aminostyryl)benzene (DSA-ph)/bis(10-hydroxybenzo[h] quino-linato)beryllium complex (Bebq2)/LiF/Al have been fabricated and characterized. The optimal brightness of the device is 69932 cd/m2 at a voltage of 13 V, and the Commission Internationale de l’Eclairage (CIE) chromaticity coordinates are almost constant during a large voltage change of 6–12 V. Furthermore, a current efficiency of 15.3 cd/A at an illumination-relevant brightness of 1000 cd/m2 is obtained, which rolls off slightly to 13.0 cd/A at an ultra high brightness of 50000 cd/m2. We attribute this great performance to wisely selecting an appropriate spacer together with effectively utilizing the combinations of exciton-harvested orange-phosphorescence/blue-fluorescence in the device. Undoubtedly, this is one of the most exciting results in two-wavelength HWOLEDs up to now.展开更多
Aim: Both conventional and flexible resins may show color alteration due to intrinsic and extrinsic factors. The aim of this study was to evaluate the color changes of the polyamid and heat polymerized acrylic denture...Aim: Both conventional and flexible resins may show color alteration due to intrinsic and extrinsic factors. The aim of this study was to evaluate the color changes of the polyamid and heat polymerized acrylic denture base materials in storage of different staining solutions. Methods: Two denture base materials were used in this study. The speciemens were stored in two staining solutions (tea, coffee), distilled water and denture cleaner. For each group, 14 speciemens (25 × 15 × 2.5 mm) were prepared. The color of speciemens was measured using a colorimeter according to the CIE L*a*b* color scale. The color changes of speciemens were evaluated before and after 7 and 30 days. All data recorded were taken by the same investigator to minimize inconstancy of technique. The data were analyzed statistically by repeated measures analysis of variance and Tukey honestly significant difference multiple comparison tests. It was found no statistically significant difference between solutions (P > 0.05). Results: Polyamid denture base resin displayed the greatest colour change when compared to polymetyhl methacrylate denture base resin (P < 0.001). Polyamid material indicated the highest value (ΔE: 7.28) in coffee solution for 7 days. Significance: The colour stability of polymetyhl methacrylate denture base resin is greater than polyamid denture base resin.展开更多
In this paper, an MoOx film is deposited on a polyethylene terephthalate (PET) substrate as a buffer layer to improve the surface roughness of the flexible PET substrate. With an optimized MoOx thickness of 100 nm, ...In this paper, an MoOx film is deposited on a polyethylene terephthalate (PET) substrate as a buffer layer to improve the surface roughness of the flexible PET substrate. With an optimized MoOx thickness of 100 nm, the surface roughness of the PET substrate can be reduced to a very small value of 0.273 nm (much less than 0.585 nm of the pure PET). Flexible white top-emitting organic light-emitting diodes (TEOLEDs) with red and blue dual phosphorescent emitting layers are constructed based on a low-reflectivity Sm/Ag semi-transparent cathode. The flexible white emission exhibits the best luminance and current injection characteristics with the 100-nm-thick MoOx buffer layer and this result indicates that a smooth substrate is beneficial to the enhancement of device electrical and electroluminescence performances. However, the white TEOLED with a 50-nm-thick MoOx buffer layer exhibits a maximum current efficiency of 4.64 cd/A and a power efficiency of 1.9 lm/W, slightly higher than those with a 100-nm MoOx buffer layer, which is mainly due to an obvious intensity enhancement but limited current increases in 50-nm MoOx-based white TEOLED. The change amplitudes of the Commission International de l’Eclairage (CIE) chromaticity coordinates are less than (0.016, 0.005) for all devices in a wide luminance range over 100 cd/m2, indicating an excellent color stability in our white flexible TEOLEDs. Additionally, the flexible white TEOLED with an MoOx buffer layer shows excellent flexibility to withstand more than 500 bending times under a curvature radius of approximately 9 mm. Research demonstrates that it is mainly attributed to the high surface energy of the MoOx buffer layer, which is conducible to the improvement of the surface adhesion to the PET substrate and the Ag anode.展开更多
This study aimed to evaluate the effect of natural weathering on some surface characteristics and mechanical properties of Styrax wood treated with mixtures of 1.0%,2.0%,or 4.0%rosin sizing agent and 3%copper sulfate....This study aimed to evaluate the effect of natural weathering on some surface characteristics and mechanical properties of Styrax wood treated with mixtures of 1.0%,2.0%,or 4.0%rosin sizing agent and 3%copper sulfate.Wood samples after treatment were exposed to outdoor conditions for one year and changes in color,glossiness,weight loss,compression strength parallel to grain(CSPG),modulus of rupture(MOR),and modulus of elasticity(MOE)were investigated after 6 and 12-month of natural weathering.The results showed that rosin-copper treatment could improve color stability and gloss of samples after weathering.Mass losses of all rosin-copper treated samples after 12 months of exposure were negligible compared with the untreated control samples.In addition,rosin-copper treatment enhanced the CSPG compared to untreated controls,but slightly decreased the MOR and MOE of Styrax wood before weathering.Natural weathering factors induced a reduction for all strength properties,however,the decrease rate for strength properties of rosin-copper treated samples was negligible compared with the untreated control samples after 12-month natural weathering exposure.The FTIR and SEM-EDX confirmed that the use of the rosin-copper formulations to impregnate wood could decrease the hazard of the copper preservative leaching into the environment,while also enhancing more resistance against weathering factors and other biotic factors.展开更多
Alginate is a widely used polymer matrix in food industry since it allows formation of spherical, soft, and strong membranes adequate for encapsulation of a large amount of products, including food. The flow rate of a...Alginate is a widely used polymer matrix in food industry since it allows formation of spherical, soft, and strong membranes adequate for encapsulation of a large amount of products, including food. The flow rate of alginate solutions and the permeability of the capsules were evaluated within an acidic-low acidic pH range and different alginate concentrations. In solutions adjusted at different pH (3.0 to 7.0) with concentrations of alginate of 0.8, 1.0, and 1.2% w/v, flow rates at 20 ℃ were 6.95 to 10.00, 4.54-5.35, and 2.60-2.80 mL sl, respectively. Permeability of the capsules was evaluated in terms of the diffusion of H+ions (expressed as pH) and soluble solids (~Brix). Meanwhile both diffusions were minor at 4.0 〈 pH 〈 7.0 and were significantly superior at more acidic pH (P 〈 0.05), alginate concentration did not present significant effect. Yellow, purple, and red juices from Stenocereus spp. fruits (pitayas) were encapsulated using 1.0% of alginate and stored with isotonic solution (3 mL g^-1) at 4 ℃ in the dark. The capsules were spherical with diameter between 4.59 and 470 mm, weight from 82.60 to 97.50 rag, and volume of 0.075-0.098 mL. Pigment (total betalains content) diffusion reached equilibrium at 24 h of storage, at which point retentions of total betalains in the yellow, purple, and red capsules were 87.79, 96.13, and 85.13%, respectively. Also, changes in the color of the capsules were observed during storage.展开更多
Voltage loading-induced change in the electroluminescence(EL)wavelength of mixed halide perovskite light-emitting diodes(PeLEDs),so-called color-shift,has become an inevitable phenomenon,which is seriously unfavorable...Voltage loading-induced change in the electroluminescence(EL)wavelength of mixed halide perovskite light-emitting diodes(PeLEDs),so-called color-shift,has become an inevitable phenomenon,which is seriously unfavorable to their applications in lighting and display.Here,we achieve color-stable blue PeLEDs via a hydrogen-bonded amine-group doping strategy.Selecting guanidine(GA)or formamidinium(FA)as amine-group(-NH_(2))doping source for CsPbBr_(x)Cl_(3-x)quantum dots(QDs),experimental and theoretical results reveal that the strong N-H…X(X=Br/Cl)bonding can be produced between-NH_(2)dopants and Pb-X lattices,thereby increasing the migration barrier of halide anions.Resultantly,color-stable sky-blue devices were realized with emission peaks fixed at 490.5(GA)and 492.5(FA)nm without any obvious shift as the voltage increases,in sharp contrast devices without N-H…X producing a 15 nm red-shift from 487 to 502 nm.Not only that,maximum external quantum efficiency is improved to 3.02%and 4.14%from the initial 1.3%.This finding offers a convenient boulevard to achieve color-stable PeLEDs with high efficiency.展开更多
In order to obtain a single-host white-light phosphor, a series of KCaPO4 powder samples tri-doped with Eu2+, Tb3+ and Mn2+ were synthesized via high-temperature solid-state reaction method. Their structural and lu...In order to obtain a single-host white-light phosphor, a series of KCaPO4 powder samples tri-doped with Eu2+, Tb3+ and Mn2+ were synthesized via high-temperature solid-state reaction method. Their structural and luminescence properties were investigated. Under proper ultraviolet excitation (255-405 urn), white light was obtained, consisting of blue, green and red emissions stemming from Eu2+, Th3+, Mn2+ ions respectively. The temperature stability of our sample was analyzed by studying the variation tendeney of CIE chromaticity coordinates at different temperatures. The results indicated that this phosphor could yield good color stability when utilized in WLED.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (No. 10CX04024A)
文摘The color changes of one representative FCC gasoline were studied. The red substance in the FCC gasoline was concentrated and separated by chromatography and analyzed by elemental analysis and gas chromatography-mass spectrometry (GC-MS). The main components of the red substance were found to be aromatic amines. Complexes formed from quinones and aromatic amines are the reason why gasoline being red, and acids can destroy the complex by reaction with aromatic amines leading to decoloration of red gasoline. A mechanism for the color change of gasoline is proposed.
基金This work was supported by funds from the Department of Science and Technology,Guangdong Province(2010B020313001)The Earmarked Fund for China Agriculture Research System(CARS-36),Ministry of Agriculture,PR China.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61675041 and 61605253)the Foundation for Innovation Research Groups of the National Natural Science Foundation of China(Grant No.61421002)the Science&Technology Department Program of Sichuan Province,China(Grant No.2016HH0027)
文摘Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue thermally activated delayed fluorescence(TADF) layer using 9,9-dimethyl-9,10-dihydroacridine-diphenylsulfone(DMAC-DPS) and an ultrathin non-doped yellow phosphorescence layer employing bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2']iridium(acetylacetonate)((tbt)_2Ir(acac)).Two kinds of materials of 4,7-diphenyl-1,10-phenanthroline(Bphen) and 1,3,5-tris(2-Nphenylbenzimidazolyl) benzene(TPBi) are selected as the electron transporting layer(ETL),and the thickness of yellow EML is adjusted to optimize device performance.The device based on a 0.3-nm-thick yellow EML and Bphen exhibits high color stability with a slight Commission International de l'Eclairage(CIE) coordinates variation of(0.017,0.009) at a luminance ranging from 52 cd/m^2 to 6998 cd/m^2.The TPBi-based device yields a high efficiency with a maximum external quantum efficiency(EQE),current efficiency,and power efficiency of 10%,21.1 cd/A,and 21.3 lm/W,respectively.The ultrathin yellow EML suppresses hole trapping and short-radius Dexter energy transfer,so that Forster energy transfer(FRET)from DMAC-DPS to(tbt)_2Ir(acac) is dominant,which is beneficial to keep the color stable.The employment of TPBi with higher triplet excited state effectively alleviates the triplet exciton quenching by ETL to improve device efficiency.
文摘A series of white phosphorescent OLED devices with buffer layer and multiple dopant structure is investigated in order to obtain better electro-optic performances and color stability. The color coordinate and color stability are related to the location of multiple dopants layer, and the optimized location can compensate for the change of the blue emission intensity under a high voltage and stabilize the spectrum. The electro-optic performances and color stability can be further improved by changing the composition and thickness of the buffer layer between the emitting layer and the electron transport layer.In device B2, the distance from multiple dopant layer to buffer layer is 2 nm and the thickness of buffer layer is 5 nm,the maximum luminance, current density, and power efficiency can reach 9091 cd/m^2, 364.5 mA/cm^2, and 26.74 lm/W,respectively. The variation of international commission on the illumination(CIE) coordinate of device B2 with voltage increasing from 4 V to 7 V is only(0.006, 0.004).
文摘We fabricate white phosphorescent organic light-emitting diodes (PHOLEDs) with three dopants and double emissive layer (EML) to achieve color stability. The white PHOLEDs use FIrpic dopant for blue EML (B- EML), and Ir(ppy)3:Ir(piq)3 dopants for green:red EML (GR-EML) with N,N'-dicarbazolyl-3, 5-benzene (mCP) as host material. Thicknesses of B-EML and GR-EML are adjusted to form a narrow recombination zone at two EML's interface and charge trapping happens in EML according to wide highest occupied molecular orbital and/or lowest unoccupied molecular orbital energy band gap of mCP and smaller energy band gap of dopants. The total thickness of both EMLs is fixed at 30 nm in the device structure of ITO (150 nm)/MoO3 (2 nm)/N,N'-diphenyl-N,N'-bis(1-naphthyl-phenyl)-(1,1″-biphenyl)-4, 4'-diamine (70 nm)/ meP:Firpic-8.0% (12 nm)/mCP:Ir(ppy)3-3.0%:Ir(piq)3-1.5% (18 nm)/2″,2',2"'-(1,3,5-benzinetriyl)-tris(1- phenyl-l-H-benzimidazole) (30 nm)/8-hydroxyquinolinolato-lithium (2 nm)/A1 (120 nm). White PHOLED shows 18.25 cd/A of luminous efficiency and white color coordinates of (0.358 and 0.378) at 5000 cd/m2 and color stability with slight CIExy change of (0.028 and 0.002) as increasing luminance from 1000 to 5000 cd/m^2.
文摘Introduction: The stability of orthodontic brackets throughout orthodontic treatment plays a critical role in the treatment’s effectiveness. The present in vitro study was designed to assess the impact of various dietary components on the performance of orthodontic brackets. Methods: Metal orthodontic brackets were bonded to 66 extracted anterior teeth divided into groups based on the solution type: Milk, Gatorade, Cold Coffee, and a control group using water. Each group consisted of 20 teeth except for the control group, which included six teeth. The bracketed teeth were submerged in their respective solutions for 15 minutes three times daily at different intervals to mimic an in vivo environment and were stored in artificial saliva at room temperature (23?C). The specimens underwent artificial aging through 10,000 cycles of thermocycling (representing one clinical year) between 5?C and 55?C. Shade measurements were taken using a VITA Easy Shade device, capturing the classic shade and L*, a*, and b* values. Delta E values were calculated immediately post-bonding and after 7 days, 1 month, 1, and 2 clinical years. The shear bond strength of each bracket was measured using an ultra-tester machine. Results: After two clinical years, significant differences in ΔE color values were observed across all groups, with the most substantial change noted in teeth immersed in cold coffee. Brackets submerged in milk demonstrated lower shear bond strength than other solutions, whereas the control group exhibited the highest shear bond strength (P = 0.01). Conclusion: The study indicates that dietary components significantly influence tooth color stability and the shear bond strength of orthodontic brackets, underscoring the importance of considering these factors in orthodontic treatment planning.
基金the National Basic Research Program of China(Grant No.2009CB623604)the National Natural Science Foundation of China(Grant Nos.61204087,51173049,U0634003,61036007,and 60937001)+1 种基金the Fundamental Research Funds for the Central Universities,China(Grant Nos.2011ZB0002 and 2011ZM0009)China Postdoctoral Science Foundation
文摘High-brightness and color-stable two-wavelength hybrid white organic light emitting diodes (HWOLEDs) with the configuration of indium tin oxide (ITO)/ N, N, N, N-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD): tetrafluoro-tetracyanoqino dimethane (F4-TCNQ)/N,N-di(naphthalene-1-yl)-N,N-diphenyl-benzidine (NPB)/ 4,4-N,N-dicarbazolebiphenyl (CBP): iridium (III) diazine complexes (MPPZ) 2 Ir(acac)/NPB/2-methyl-9,10-di(2-naphthyl)anthracene (MADN): p-bis(p-N,N-di-phenyl-aminostyryl)benzene (DSA-ph)/bis(10-hydroxybenzo[h] quino-linato)beryllium complex (Bebq2)/LiF/Al have been fabricated and characterized. The optimal brightness of the device is 69932 cd/m2 at a voltage of 13 V, and the Commission Internationale de l’Eclairage (CIE) chromaticity coordinates are almost constant during a large voltage change of 6–12 V. Furthermore, a current efficiency of 15.3 cd/A at an illumination-relevant brightness of 1000 cd/m2 is obtained, which rolls off slightly to 13.0 cd/A at an ultra high brightness of 50000 cd/m2. We attribute this great performance to wisely selecting an appropriate spacer together with effectively utilizing the combinations of exciton-harvested orange-phosphorescence/blue-fluorescence in the device. Undoubtedly, this is one of the most exciting results in two-wavelength HWOLEDs up to now.
基金supported financially by the Department of Scientific Research Projects of Ataturk University(Project No.2003/158)and(Project no.2010/141).
文摘Aim: Both conventional and flexible resins may show color alteration due to intrinsic and extrinsic factors. The aim of this study was to evaluate the color changes of the polyamid and heat polymerized acrylic denture base materials in storage of different staining solutions. Methods: Two denture base materials were used in this study. The speciemens were stored in two staining solutions (tea, coffee), distilled water and denture cleaner. For each group, 14 speciemens (25 × 15 × 2.5 mm) were prepared. The color of speciemens was measured using a colorimeter according to the CIE L*a*b* color scale. The color changes of speciemens were evaluated before and after 7 and 30 days. All data recorded were taken by the same investigator to minimize inconstancy of technique. The data were analyzed statistically by repeated measures analysis of variance and Tukey honestly significant difference multiple comparison tests. It was found no statistically significant difference between solutions (P > 0.05). Results: Polyamid denture base resin displayed the greatest colour change when compared to polymetyhl methacrylate denture base resin (P < 0.001). Polyamid material indicated the highest value (ΔE: 7.28) in coffee solution for 7 days. Significance: The colour stability of polymetyhl methacrylate denture base resin is greater than polyamid denture base resin.
基金Project supported by the National Key Basic Research and Development Program of China(Grant No.2009CB930600)the National Natural Science Founda-tion of China(Grant Nos.61274065,60907047,51173081,and 61136003)the"333"and"Qing Lan"Program of Jiangsu Province,and the"Qing Lan"and"Pandeng"Project of Nanjing University of Posts and Telecommunications(Grant Nos.NY210040,NY211069,and NY 210015)
文摘In this paper, an MoOx film is deposited on a polyethylene terephthalate (PET) substrate as a buffer layer to improve the surface roughness of the flexible PET substrate. With an optimized MoOx thickness of 100 nm, the surface roughness of the PET substrate can be reduced to a very small value of 0.273 nm (much less than 0.585 nm of the pure PET). Flexible white top-emitting organic light-emitting diodes (TEOLEDs) with red and blue dual phosphorescent emitting layers are constructed based on a low-reflectivity Sm/Ag semi-transparent cathode. The flexible white emission exhibits the best luminance and current injection characteristics with the 100-nm-thick MoOx buffer layer and this result indicates that a smooth substrate is beneficial to the enhancement of device electrical and electroluminescence performances. However, the white TEOLED with a 50-nm-thick MoOx buffer layer exhibits a maximum current efficiency of 4.64 cd/A and a power efficiency of 1.9 lm/W, slightly higher than those with a 100-nm MoOx buffer layer, which is mainly due to an obvious intensity enhancement but limited current increases in 50-nm MoOx-based white TEOLED. The change amplitudes of the Commission International de l’Eclairage (CIE) chromaticity coordinates are less than (0.016, 0.005) for all devices in a wide luminance range over 100 cd/m2, indicating an excellent color stability in our white flexible TEOLEDs. Additionally, the flexible white TEOLED with an MoOx buffer layer shows excellent flexibility to withstand more than 500 bending times under a curvature radius of approximately 9 mm. Research demonstrates that it is mainly attributed to the high surface energy of the MoOx buffer layer, which is conducible to the improvement of the surface adhesion to the PET substrate and the Ag anode.
基金the support of the Vietnam National Foundation for Science and Technology Development(NAFOSTED)[Grant No.106.99-2018.16].
文摘This study aimed to evaluate the effect of natural weathering on some surface characteristics and mechanical properties of Styrax wood treated with mixtures of 1.0%,2.0%,or 4.0%rosin sizing agent and 3%copper sulfate.Wood samples after treatment were exposed to outdoor conditions for one year and changes in color,glossiness,weight loss,compression strength parallel to grain(CSPG),modulus of rupture(MOR),and modulus of elasticity(MOE)were investigated after 6 and 12-month of natural weathering.The results showed that rosin-copper treatment could improve color stability and gloss of samples after weathering.Mass losses of all rosin-copper treated samples after 12 months of exposure were negligible compared with the untreated control samples.In addition,rosin-copper treatment enhanced the CSPG compared to untreated controls,but slightly decreased the MOR and MOE of Styrax wood before weathering.Natural weathering factors induced a reduction for all strength properties,however,the decrease rate for strength properties of rosin-copper treated samples was negligible compared with the untreated control samples after 12-month natural weathering exposure.The FTIR and SEM-EDX confirmed that the use of the rosin-copper formulations to impregnate wood could decrease the hazard of the copper preservative leaching into the environment,while also enhancing more resistance against weathering factors and other biotic factors.
文摘Alginate is a widely used polymer matrix in food industry since it allows formation of spherical, soft, and strong membranes adequate for encapsulation of a large amount of products, including food. The flow rate of alginate solutions and the permeability of the capsules were evaluated within an acidic-low acidic pH range and different alginate concentrations. In solutions adjusted at different pH (3.0 to 7.0) with concentrations of alginate of 0.8, 1.0, and 1.2% w/v, flow rates at 20 ℃ were 6.95 to 10.00, 4.54-5.35, and 2.60-2.80 mL sl, respectively. Permeability of the capsules was evaluated in terms of the diffusion of H+ions (expressed as pH) and soluble solids (~Brix). Meanwhile both diffusions were minor at 4.0 〈 pH 〈 7.0 and were significantly superior at more acidic pH (P 〈 0.05), alginate concentration did not present significant effect. Yellow, purple, and red juices from Stenocereus spp. fruits (pitayas) were encapsulated using 1.0% of alginate and stored with isotonic solution (3 mL g^-1) at 4 ℃ in the dark. The capsules were spherical with diameter between 4.59 and 470 mm, weight from 82.60 to 97.50 rag, and volume of 0.075-0.098 mL. Pigment (total betalains content) diffusion reached equilibrium at 24 h of storage, at which point retentions of total betalains in the yellow, purple, and red capsules were 87.79, 96.13, and 85.13%, respectively. Also, changes in the color of the capsules were observed during storage.
基金the National Natural Science Foundation of China(61725402,51922049)the Fundamental Research Funds for the Central Universities(30919012107,30920032102)+2 种基金the National“Ten Thousand Talents Plan”Leading Talents(W03020394)the Six Top Talent Innovation Teams of Jiangsu Province(TD-XCL-004)the Natural Science Foundation of Jiangsu Province(BK2018002)。
文摘Voltage loading-induced change in the electroluminescence(EL)wavelength of mixed halide perovskite light-emitting diodes(PeLEDs),so-called color-shift,has become an inevitable phenomenon,which is seriously unfavorable to their applications in lighting and display.Here,we achieve color-stable blue PeLEDs via a hydrogen-bonded amine-group doping strategy.Selecting guanidine(GA)or formamidinium(FA)as amine-group(-NH_(2))doping source for CsPbBr_(x)Cl_(3-x)quantum dots(QDs),experimental and theoretical results reveal that the strong N-H…X(X=Br/Cl)bonding can be produced between-NH_(2)dopants and Pb-X lattices,thereby increasing the migration barrier of halide anions.Resultantly,color-stable sky-blue devices were realized with emission peaks fixed at 490.5(GA)and 492.5(FA)nm without any obvious shift as the voltage increases,in sharp contrast devices without N-H…X producing a 15 nm red-shift from 487 to 502 nm.Not only that,maximum external quantum efficiency is improved to 3.02%and 4.14%from the initial 1.3%.This finding offers a convenient boulevard to achieve color-stable PeLEDs with high efficiency.
基金supported by National Key Basic Research Program of China(2013CB921800)the National Natural Science Foundation of China(11374291,11204292,11274299,11311120047)+1 种基金the Fundamental Research Funds for the Central Universities(WK2030020021)Anhui Provincial Natural Science Foundation(1308085QE75)
文摘In order to obtain a single-host white-light phosphor, a series of KCaPO4 powder samples tri-doped with Eu2+, Tb3+ and Mn2+ were synthesized via high-temperature solid-state reaction method. Their structural and luminescence properties were investigated. Under proper ultraviolet excitation (255-405 urn), white light was obtained, consisting of blue, green and red emissions stemming from Eu2+, Th3+, Mn2+ ions respectively. The temperature stability of our sample was analyzed by studying the variation tendeney of CIE chromaticity coordinates at different temperatures. The results indicated that this phosphor could yield good color stability when utilized in WLED.