For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the...For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the corresponding phase hologram is obtained by holographic technology and the watermark is self-embedded in the frequency domain.Secondly,by applying the Hilbert transform principle and genetic center law,a complete set of image encryption algorithms is constructed to realize the encryption of image information.Finally,simulation results and security analysis indicate that the scheme can effectively encrypt and decrypt image information and realize the copyright protection of information.The introduced scheme can provide some support for relevant theoretical research,and has practical significance.展开更多
As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most q...As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most quantum image filterings are based on classical domains and grayscale images,and there are relatively fewer studies on anti-aliasing in the quantum domain.This paper proposes a scheme for anti-aliasing filtering based on quantum grayscale and color image scaling in the spatial domain.It achieves the effect of anti-aliasing filtering on quantum images during the scaling process.First,we use the novel enhanced quantum representation(NEQR)and the improved quantum representation of color images(INCQI)to represent classical images.Since aliasing phenomena are more pronounced when images are scaled down,this paper focuses only on the anti-aliasing effects in the case of reduction.Subsequently,we perform anti-aliasing filtering on the quantum representation of the original image and then use bilinear interpolation to scale down the image,achieving the anti-aliasing effect.The constructed pyramid model is then used to select an appropriate image for upscaling to the original image size.Finally,the complexity of the circuit is analyzed.Compared to the images experiencing aliasing effects solely due to scaling,applying anti-aliasing filtering to the images results in smoother and clearer outputs.Additionally,the anti-aliasing filtering allows for manual intervention to select the desired level of image smoothness.展开更多
A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are con...A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.展开更多
In order to effectively restore color noisy images with the mixture of Gaussian noise and impulse noise,a new algorithm is proposed using the quaternion-based holistic processing idea for color images.First,a color im...In order to effectively restore color noisy images with the mixture of Gaussian noise and impulse noise,a new algorithm is proposed using the quaternion-based holistic processing idea for color images.First,a color image is represented by a pure quaternion matrix.Secondly,according to the different characteristics of the Gaussian noise and the impulse noise,an algorithm based on quaternion directional vector order statistics is used to detect the impulse noise. Finally,the quaternion optimal weights non-local means filter (QOWNLMF)for Gaussian noise removal is improved for the mixed noise removal.The detected impulse noise pixels are not considered in the calculation of weights.Experimental results on five standard images demonstrate that the proposed algorithm performs better than the commonly used robust outlyingness ratio-nonlocal means (ROR-NLM)algorithm and the optimal weights mixed filter (OWMF).展开更多
An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depen...An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depends on the analysis of various color features from each tested color image via the designed feature encoding. It is different from the pervious methods where self organized feature map (SOFM) is used for constructing the feature encoding so that the feature encoding can self organize the effective features for different color images. Fuzzy clustering is applied for the final segmentation when the well suited color features and the initial parameter are available. The proposed method has been applied in segmenting different types of color images and the experimental results show that it outperforms the classical clustering method. The study shows that the feature encoding approach offers great promise in automating and optimizing the segmentation of color images.展开更多
Abstract:Stephen Crane was an outstanding American novelist,poet,and journalist.He achieved great success in his literary works during his brief career.Crane’s most well-known work,The Red Badge of Courage,is commonl...Abstract:Stephen Crane was an outstanding American novelist,poet,and journalist.He achieved great success in his literary works during his brief career.Crane’s most well-known work,The Red Badge of Courage,is commonly believed to be the first great novel of the American Civil War,largely because of its vivid and detailed description of the experience of warfare.This paper analyzes the images of color,animal and machine,which convey Crane’s thoughts of war:war is full of chaos,brutality,and confusion,without any romantic elements or heroism.展开更多
A method to estimate the thickness of the sea ice of the Bohai Sea is proposed using geostationary ocean color imager (GOCI) data and then applied to the dynamic monitoring of the sea ice thickness in the Bohal Sea ...A method to estimate the thickness of the sea ice of the Bohai Sea is proposed using geostationary ocean color imager (GOCI) data and then applied to the dynamic monitoring of the sea ice thickness in the Bohal Sea during the winter of 2014 to 2015. First of all, a model is given between the GOCI shortwave broadband albedo and the reflectance of each band with high temporal resolution GOCI data. Then, the relationship model between the sea ice thickness and the GOCI shortwave broadband albedo is established and applied to the thickness extraction of the sea ice in the Bohai Sea. Finally, the sea ice thickness extraction method is tested by the results based on the MODIS data, thermodynamic empirical models (Lebedev and Zubov), and the in situ ice thickness data. The test results not only indicated that the sea ice thickness retrieval method based on the GOCI data was a good correlation (r2〉0.66) with the sea ice thickness retrieved by the MODIS and thermodynamic empirical models, but also that the RMS is only 6.82 cm different from the thickness of the sea ice based on the GOCI and in situ data.展开更多
In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic ...In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic sequences, a novel color image encryption algorithm is proposed by employing a hybrid model of bidirectional circular permutation and DNA masking. In this scheme, the pixel positions of image are scrambled by circular permutation, and the pixel values are substituted by DNA sequence operations. In the DNA sequence operations, addition and substraction operations are performed according to traditional addition and subtraction in the binary, and two rounds of addition rules are used to encrypt the pixel values. The simulation results and security analysis show that the hyperchaotic map is suitable for image encryption, and the proposed encryption algorithm has good encryption effect and strong key sensitivity. It can resist brute-force attack, statistical attack, differential attack, known-plaintext, and chosen-plaintext attacks.展开更多
A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected...A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.展开更多
Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them....Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them. In the paper, a novel color image encryption algorithm is introduced. The 24 bit planes of components R, G, and B of the color plain image are obtained and recombined into 4 compound bit planes, and this can make the three components affect each other. A four-dimensional(4D) memristive hyperchaotic system generates the pseudorandom key streams and its initial values come from the SHA 256 hash value of the color plain image. The compound bit planes and key streams are confused according to the principles of genetic recombination, then confusion and diffusion as a union are applied to the bit planes,and the color cipher image is obtained. Experimental results and security analyses demonstrate that the proposed algorithm is secure and effective so that it may be adopted for secure communication.展开更多
True color image city map is a sort of new-style map which combines the high resolution image and map symbols and shows both advantages in visualization. At the same time, the map unification and harmonization should ...True color image city map is a sort of new-style map which combines the high resolution image and map symbols and shows both advantages in visualization. At the same time, the map unification and harmonization should be taken into account dur-ing the design process, since some visual conflicts appear when map symbols overlaid on the true color image. The objective of this research is to explore the rules in the process of true color image city map design based on chromatic and aesthetic knowledge. At the end, taking the Image Atlas of Guangzhou as an example, image color adjustment, road network presentation, and symbol de-signing issues will be discussed in the application.展开更多
To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can ...To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.展开更多
In the paper,a convolutional neural network based on quaternion transformation is proposed to detect median filtering for color images.Compared with conventional convolutional neural network,color images can be proces...In the paper,a convolutional neural network based on quaternion transformation is proposed to detect median filtering for color images.Compared with conventional convolutional neural network,color images can be processed in a holistic manner in the proposed scheme,which makes full use of the correlation between RGB channels.And due to the use of convolutional neural network,it can effectively avoid the one-sidedness of artificial features.Experimental results have shown the scheme’s improvement over the state-of-the-art scheme on the accuracy of color image median filtering detection.展开更多
It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural si...It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural similarity based image quality assessment was proposed under the assumption that the Human Visual System(HVS)is highly adapted for extracting structural information from an image.While the demand on high color quality increases in the media industry,color loss will make the visual quality different.In this paper,we proposed an improved quality assessment(QA)method by adding color comparison into the structural similarity(SSIM)measurement system for evaluating color image quality.Then we divided the task of similarity measurement into four comparisons:luminance,contrast,structure,and color.Experimental results show that the predicted quality scores of the proposed method are more effective and consistent with visual quality than the classical methods using five different distortion types of color image sets.展开更多
The rapid development of biomedical imaging modalities led to its wide application in disease diagnosis.Tongue-based diagnostic procedures are proficient and non-invasive in nature to carry out secondary diagnostic pr...The rapid development of biomedical imaging modalities led to its wide application in disease diagnosis.Tongue-based diagnostic procedures are proficient and non-invasive in nature to carry out secondary diagnostic processes ubiquitously.Traditionally,physicians examine the characteristics of tongue prior to decision-making.In this scenario,to get rid of qualitative aspects,tongue images can be quantitatively inspected for which a new disease diagnosis model is proposed.This model can reduce the physical harm made to the patients.Several tongue image analytical methodologies have been proposed earlier.However,there is a need exists to design an intelligent Deep Learning(DL)based disease diagnosis model.With this motivation,the current research article designs an Intelligent DL-basedDisease Diagnosis method using Biomedical Tongue Images called IDLDD-BTI model.The proposed IDLDD-BTI model incorporates Fuzzy-based Adaptive Median Filtering(FADM)technique for noise removal process.Besides,SqueezeNet model is employed as a feature extractor in which the hyperparameters of SqueezeNet are tuned using Oppositional Glowworm Swarm Optimization(OGSO)algorithm.At last,Weighted Extreme Learning Machine(WELM)classifier is applied to allocate proper class labels for input tongue color images.The design of OGSO algorithm for SqueezeNet model shows the novelty of the work.To assess the enhanced diagnostic performance of the presented IDLDD-BTI technique,a series of simulations was conducted on benchmark dataset and the results were examined in terms of several measures.The resultant experimental values highlighted the supremacy of IDLDD-BTI model over other state-of-the-art methods.展开更多
Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are genera...Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT.展开更多
The substitution box(S-box)is a fundamentally important component of symmetric key cryptosystem.An S-box is a primary source of non-linearity in modern block ciphers,and it resists the linear attack.Various approaches...The substitution box(S-box)is a fundamentally important component of symmetric key cryptosystem.An S-box is a primary source of non-linearity in modern block ciphers,and it resists the linear attack.Various approaches have been adopted to construct S-boxes.S-boxes are commonly constructed over commutative and associative algebraic structures including Galois fields,unitary commutative rings and cyclic and non-cyclic finite groups.In this paper,first a non-associative ring of order 512 is obtained by using computational techniques,and then by this ring a triplet of 8×8 S-boxes is designed.The motivation behind the designing of these S-boxes is to upsurge the robustness and broaden the key space due to non-associative and noncommutative behavior of the algebraic structure under consideration.A novel color image encryption application is anticipated in which initially these 3 S-boxes are being used to produce confusion in three layers of a standard RGB image.However,for the sake of diffusion 3D Arnold chaotic map is used in the proposed encryption scheme.A comparison with some of existing chaos and S-box dependent color image encryption schemes specs the performance results of the anticipated RGB image encryption and observed as approaching the standard prime level.展开更多
A scheme of embedding an encrypted watermark into the green component of a color image is proposed. The embedding process is implemented in the discrete wavelet transformation (DWT) domain, The original binary water...A scheme of embedding an encrypted watermark into the green component of a color image is proposed. The embedding process is implemented in the discrete wavelet transformation (DWT) domain, The original binary watermark image is firstly encrypted through scrambling technique, and then spread with two orthogonal pseudo-random sequences whose mean values are equal to zero, and finally embedded into the DWT low frequency sub-band of green components, The coefficients whose energies are larger than the others are selected to hide watermark, and the hidden watermark strength is determined by the energy ratio between the selected coefficients energies and the mean energy of the subband. The experiment results demonstrate that the proposed watermarking scheme is very robust against the attacks such as additive noise, low-pass filtering, scaling, cropping image, row (or column ) deleting, and }PEG compression.展开更多
The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication ...The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication medium where it could be intercepted by unauthorized entities.This study provides an approach to color image encryption that could find practical use in various contexts.The proposed method,which combines four chaotic systems,employs singular value decomposition and a chaotic sequence,making it both secure and compression-friendly.The unified average change intensity,the number of pixels’change rate,information entropy analysis,correlation coefficient analysis,compression friendliness,and security against brute force,statistical analysis and differential attacks are all used to evaluate the algorithm’s performance.Following a thorough investigation of the experimental data,it is concluded that the proposed image encryption approach is secure against a wide range of attacks and provides superior compression friendliness when compared to chaos-based alternatives.展开更多
Tongue diagnosis is a novel and non-invasive approach commonly employed to carry out the supplementary diagnosis over the globe.Recently,several deep learning(DL)based tongue color image analysis models have existed i...Tongue diagnosis is a novel and non-invasive approach commonly employed to carry out the supplementary diagnosis over the globe.Recently,several deep learning(DL)based tongue color image analysis models have existed in the literature for the effective detection of diseases.This paper presents a fusion of handcrafted with deep features based tongue color image analysis(FHDF-TCIA)technique to biomedical applications.The proposed FDHF-TCIA technique aims to investigate the tongue images using fusion model,and thereby determines the existence of disease.Primarily,the FHDF-TCIA technique comprises Gaussian filtering based preprocessing to eradicate the noise.The proposed FHDF-TCIA model encompasses a fusion of handcrafted local binary patterns(LBP)withMobileNet based deep features for the generation of optimal feature vectors.In addition,the political optimizer based quantum neural network(PO-QNN)based classification technique has been utilized for determining the proper class labels for it.A detailed simulation outcomes analysis of the FHDF-TCIA technique reported the higher accuracy of 0.992.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.62061014)。
文摘For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the corresponding phase hologram is obtained by holographic technology and the watermark is self-embedded in the frequency domain.Secondly,by applying the Hilbert transform principle and genetic center law,a complete set of image encryption algorithms is constructed to realize the encryption of image information.Finally,simulation results and security analysis indicate that the scheme can effectively encrypt and decrypt image information and realize the copyright protection of information.The introduced scheme can provide some support for relevant theoretical research,and has practical significance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62172268 and 62302289)the Shanghai Science and Technology Project(Grant Nos.21JC1402800 and 23YF1416200)。
文摘As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most quantum image filterings are based on classical domains and grayscale images,and there are relatively fewer studies on anti-aliasing in the quantum domain.This paper proposes a scheme for anti-aliasing filtering based on quantum grayscale and color image scaling in the spatial domain.It achieves the effect of anti-aliasing filtering on quantum images during the scaling process.First,we use the novel enhanced quantum representation(NEQR)and the improved quantum representation of color images(INCQI)to represent classical images.Since aliasing phenomena are more pronounced when images are scaled down,this paper focuses only on the anti-aliasing effects in the case of reduction.Subsequently,we perform anti-aliasing filtering on the quantum representation of the original image and then use bilinear interpolation to scale down the image,achieving the anti-aliasing effect.The constructed pyramid model is then used to select an appropriate image for upscaling to the original image size.Finally,the complexity of the circuit is analyzed.Compared to the images experiencing aliasing effects solely due to scaling,applying anti-aliasing filtering to the images results in smoother and clearer outputs.Additionally,the anti-aliasing filtering allows for manual intervention to select the desired level of image smoothness.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62105004 and 52174141)the College Student Innovation and Entrepreneurship Fund Project(Grant No.202210361053)+1 种基金Anhui Mining Machinery and Electrical Equipment Coordination Innovation Center,Anhui University of Science&Technology(Grant No.KSJD202304)the Anhui Province Digital Agricultural Engineering Technology Research Center Open Project(Grant No.AHSZNYGC-ZXKF021)。
文摘A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.
基金The National Natural Science Foundation of China(No.61572258,61173141,61271312,61232016,61272421)the Natural Science Foundation of Jiangsu Province(No.BK2012858,BK20151530)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.13KJB520015)Open Fund of Jiangsu Engineering Center of Network Monitoring(No.KJR1404)
文摘In order to effectively restore color noisy images with the mixture of Gaussian noise and impulse noise,a new algorithm is proposed using the quaternion-based holistic processing idea for color images.First,a color image is represented by a pure quaternion matrix.Secondly,according to the different characteristics of the Gaussian noise and the impulse noise,an algorithm based on quaternion directional vector order statistics is used to detect the impulse noise. Finally,the quaternion optimal weights non-local means filter (QOWNLMF)for Gaussian noise removal is improved for the mixed noise removal.The detected impulse noise pixels are not considered in the calculation of weights.Experimental results on five standard images demonstrate that the proposed algorithm performs better than the commonly used robust outlyingness ratio-nonlocal means (ROR-NLM)algorithm and the optimal weights mixed filter (OWMF).
文摘An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depends on the analysis of various color features from each tested color image via the designed feature encoding. It is different from the pervious methods where self organized feature map (SOFM) is used for constructing the feature encoding so that the feature encoding can self organize the effective features for different color images. Fuzzy clustering is applied for the final segmentation when the well suited color features and the initial parameter are available. The proposed method has been applied in segmenting different types of color images and the experimental results show that it outperforms the classical clustering method. The study shows that the feature encoding approach offers great promise in automating and optimizing the segmentation of color images.
文摘Abstract:Stephen Crane was an outstanding American novelist,poet,and journalist.He achieved great success in his literary works during his brief career.Crane’s most well-known work,The Red Badge of Courage,is commonly believed to be the first great novel of the American Civil War,largely because of its vivid and detailed description of the experience of warfare.This paper analyzes the images of color,animal and machine,which convey Crane’s thoughts of war:war is full of chaos,brutality,and confusion,without any romantic elements or heroism.
基金The National Natural Science Foundation of China under contract No.41306193the Research and Development Special Foundation for Public Welfare Industry under of China contract No.201105016the Basic Research of First Institute of Oceanography,State Oceanic Administration under contract No.GY2014T03
文摘A method to estimate the thickness of the sea ice of the Bohai Sea is proposed using geostationary ocean color imager (GOCI) data and then applied to the dynamic monitoring of the sea ice thickness in the Bohal Sea during the winter of 2014 to 2015. First of all, a model is given between the GOCI shortwave broadband albedo and the reflectance of each band with high temporal resolution GOCI data. Then, the relationship model between the sea ice thickness and the GOCI shortwave broadband albedo is established and applied to the thickness extraction of the sea ice in the Bohai Sea. Finally, the sea ice thickness extraction method is tested by the results based on the MODIS data, thermodynamic empirical models (Lebedev and Zubov), and the in situ ice thickness data. The test results not only indicated that the sea ice thickness retrieval method based on the GOCI data was a good correlation (r2〉0.66) with the sea ice thickness retrieved by the MODIS and thermodynamic empirical models, but also that the RMS is only 6.82 cm different from the thickness of the sea ice based on the GOCI and in situ data.
基金supported by the National Natural Science Foundation of China(Grant Nos.61161006 and 61573383)
文摘In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic sequences, a novel color image encryption algorithm is proposed by employing a hybrid model of bidirectional circular permutation and DNA masking. In this scheme, the pixel positions of image are scrambled by circular permutation, and the pixel values are substituted by DNA sequence operations. In the DNA sequence operations, addition and substraction operations are performed according to traditional addition and subtraction in the binary, and two rounds of addition rules are used to encrypt the pixel values. The simulation results and security analysis show that the hyperchaotic map is suitable for image encryption, and the proposed encryption algorithm has good encryption effect and strong key sensitivity. It can resist brute-force attack, statistical attack, differential attack, known-plaintext, and chosen-plaintext attacks.
基金supported partly by the National Basic Research Program of China (2005CB724303)the National Natural Science Foundation of China (60671062) Shanghai Leading Academic Discipline Project (B112).
文摘A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.
基金supported by the National Natural Science Foundation of China(Grant Nos.61203094 and 61305042)the Natural Science Foundation of the United States(Grant Nos.CNS-1253424 and ECCS-1202225)+3 种基金the Science and Technology Foundation of Henan Province,China(Grant No.152102210048)the Foundation and Frontier Project of Henan Province,China(Grant No.162300410196)the Natural Science Foundation of Educational Committee of Henan Province,China(Grant No.14A413015)the Research Foundation of Henan University,China(Grant No.xxjc20140006)
文摘Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them. In the paper, a novel color image encryption algorithm is introduced. The 24 bit planes of components R, G, and B of the color plain image are obtained and recombined into 4 compound bit planes, and this can make the three components affect each other. A four-dimensional(4D) memristive hyperchaotic system generates the pseudorandom key streams and its initial values come from the SHA 256 hash value of the color plain image. The compound bit planes and key streams are confused according to the principles of genetic recombination, then confusion and diffusion as a union are applied to the bit planes,and the color cipher image is obtained. Experimental results and security analyses demonstrate that the proposed algorithm is secure and effective so that it may be adopted for secure communication.
文摘True color image city map is a sort of new-style map which combines the high resolution image and map symbols and shows both advantages in visualization. At the same time, the map unification and harmonization should be taken into account dur-ing the design process, since some visual conflicts appear when map symbols overlaid on the true color image. The objective of this research is to explore the rules in the process of true color image city map design based on chromatic and aesthetic knowledge. At the end, taking the Image Atlas of Guangzhou as an example, image color adjustment, road network presentation, and symbol de-signing issues will be discussed in the application.
基金Project(60874070) supported by the National Natural Science Foundation of China
文摘To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.
基金The work was supported in part by the Natural Science Foundation of China under Grants(Nos.61772281,61502241,61272421,61232016,61402235 and 61572258)in part by the Natural Science Foundation of Jiangsu Province,China under Grant BK20141006+1 种基金in part by the Natural Science Foundation of the Universities in Jiangsu Province under Grant 14KJB520024the PAPD fund and the CICAEET fund.
文摘In the paper,a convolutional neural network based on quaternion transformation is proposed to detect median filtering for color images.Compared with conventional convolutional neural network,color images can be processed in a holistic manner in the proposed scheme,which makes full use of the correlation between RGB channels.And due to the use of convolutional neural network,it can effectively avoid the one-sidedness of artificial features.Experimental results have shown the scheme’s improvement over the state-of-the-art scheme on the accuracy of color image median filtering detection.
文摘It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural similarity based image quality assessment was proposed under the assumption that the Human Visual System(HVS)is highly adapted for extracting structural information from an image.While the demand on high color quality increases in the media industry,color loss will make the visual quality different.In this paper,we proposed an improved quality assessment(QA)method by adding color comparison into the structural similarity(SSIM)measurement system for evaluating color image quality.Then we divided the task of similarity measurement into four comparisons:luminance,contrast,structure,and color.Experimental results show that the predicted quality scores of the proposed method are more effective and consistent with visual quality than the classical methods using five different distortion types of color image sets.
基金This paper was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia,under grant No.(D-79-305-1442).The authors,therefore,gratefully acknowledge DSR technical and financial support.
文摘The rapid development of biomedical imaging modalities led to its wide application in disease diagnosis.Tongue-based diagnostic procedures are proficient and non-invasive in nature to carry out secondary diagnostic processes ubiquitously.Traditionally,physicians examine the characteristics of tongue prior to decision-making.In this scenario,to get rid of qualitative aspects,tongue images can be quantitatively inspected for which a new disease diagnosis model is proposed.This model can reduce the physical harm made to the patients.Several tongue image analytical methodologies have been proposed earlier.However,there is a need exists to design an intelligent Deep Learning(DL)based disease diagnosis model.With this motivation,the current research article designs an Intelligent DL-basedDisease Diagnosis method using Biomedical Tongue Images called IDLDD-BTI model.The proposed IDLDD-BTI model incorporates Fuzzy-based Adaptive Median Filtering(FADM)technique for noise removal process.Besides,SqueezeNet model is employed as a feature extractor in which the hyperparameters of SqueezeNet are tuned using Oppositional Glowworm Swarm Optimization(OGSO)algorithm.At last,Weighted Extreme Learning Machine(WELM)classifier is applied to allocate proper class labels for input tongue color images.The design of OGSO algorithm for SqueezeNet model shows the novelty of the work.To assess the enhanced diagnostic performance of the presented IDLDD-BTI technique,a series of simulations was conducted on benchmark dataset and the results were examined in terms of several measures.The resultant experimental values highlighted the supremacy of IDLDD-BTI model over other state-of-the-art methods.
基金supported by the National Natural Science Foundation of China(61271315)the State Scholarship Fund of China
文摘Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT.
文摘The substitution box(S-box)is a fundamentally important component of symmetric key cryptosystem.An S-box is a primary source of non-linearity in modern block ciphers,and it resists the linear attack.Various approaches have been adopted to construct S-boxes.S-boxes are commonly constructed over commutative and associative algebraic structures including Galois fields,unitary commutative rings and cyclic and non-cyclic finite groups.In this paper,first a non-associative ring of order 512 is obtained by using computational techniques,and then by this ring a triplet of 8×8 S-boxes is designed.The motivation behind the designing of these S-boxes is to upsurge the robustness and broaden the key space due to non-associative and noncommutative behavior of the algebraic structure under consideration.A novel color image encryption application is anticipated in which initially these 3 S-boxes are being used to produce confusion in three layers of a standard RGB image.However,for the sake of diffusion 3D Arnold chaotic map is used in the proposed encryption scheme.A comparison with some of existing chaos and S-box dependent color image encryption schemes specs the performance results of the anticipated RGB image encryption and observed as approaching the standard prime level.
文摘A scheme of embedding an encrypted watermark into the green component of a color image is proposed. The embedding process is implemented in the discrete wavelet transformation (DWT) domain, The original binary watermark image is firstly encrypted through scrambling technique, and then spread with two orthogonal pseudo-random sequences whose mean values are equal to zero, and finally embedded into the DWT low frequency sub-band of green components, The coefficients whose energies are larger than the others are selected to hide watermark, and the hidden watermark strength is determined by the energy ratio between the selected coefficients energies and the mean energy of the subband. The experiment results demonstrate that the proposed watermarking scheme is very robust against the attacks such as additive noise, low-pass filtering, scaling, cropping image, row (or column ) deleting, and }PEG compression.
基金funded by Deanship of Scientific Research at King Khalid University under Grant Number R.G.P.2/86/43.
文摘The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication medium where it could be intercepted by unauthorized entities.This study provides an approach to color image encryption that could find practical use in various contexts.The proposed method,which combines four chaotic systems,employs singular value decomposition and a chaotic sequence,making it both secure and compression-friendly.The unified average change intensity,the number of pixels’change rate,information entropy analysis,correlation coefficient analysis,compression friendliness,and security against brute force,statistical analysis and differential attacks are all used to evaluate the algorithm’s performance.Following a thorough investigation of the experimental data,it is concluded that the proposed image encryption approach is secure against a wide range of attacks and provides superior compression friendliness when compared to chaos-based alternatives.
基金This Research was funded by the Deanship of Scientific Research at University of Business and Technology,Saudi Arabia.
文摘Tongue diagnosis is a novel and non-invasive approach commonly employed to carry out the supplementary diagnosis over the globe.Recently,several deep learning(DL)based tongue color image analysis models have existed in the literature for the effective detection of diseases.This paper presents a fusion of handcrafted with deep features based tongue color image analysis(FHDF-TCIA)technique to biomedical applications.The proposed FDHF-TCIA technique aims to investigate the tongue images using fusion model,and thereby determines the existence of disease.Primarily,the FHDF-TCIA technique comprises Gaussian filtering based preprocessing to eradicate the noise.The proposed FHDF-TCIA model encompasses a fusion of handcrafted local binary patterns(LBP)withMobileNet based deep features for the generation of optimal feature vectors.In addition,the political optimizer based quantum neural network(PO-QNN)based classification technique has been utilized for determining the proper class labels for it.A detailed simulation outcomes analysis of the FHDF-TCIA technique reported the higher accuracy of 0.992.