Owing to the fact that the conventional deterministic back analysis of the permeability coefficient cannot reflect the uncertainties of parameters, including the hydraulic head at the boundary, the permeability coeffi...Owing to the fact that the conventional deterministic back analysis of the permeability coefficient cannot reflect the uncertainties of parameters, including the hydraulic head at the boundary, the permeability coefficient and measured hydraulic head, a stochastic back analysis taking consideration of uncertainties of parameters was performed using the generalized Bayesian method. Based on the stochastic finite element method (SFEM) for a seepage field, the variable metric algorithm and the generalized Bayesian method, formulas for stochastic back analysis of the permeability coefficient were derived. A case study of seepage analysis of a sluice foundation was performed to illustrate the proposed method. The results indicate that, with the generalized Bayesian method that considers the uncertainties of measured hydraulic head, the permeability coefficient and the hydraulic head at the boundary, both the mean and standard deviation of the permeability coefficient can be obtained and the standard deviation is less than that obtained by the conventional Bayesian method. Therefore, the present method is valid and applicable.展开更多
Software is an important part of automotive product development, and it is commonly known that software quality assurance consumes considerable effort in safety-critical embedded software development. Increasing the e...Software is an important part of automotive product development, and it is commonly known that software quality assurance consumes considerable effort in safety-critical embedded software development. Increasing the effectiveness and efficiency of this effort thus becomes more and more important. Identifying problematic code areas which are most likely to fail and therefore require most of the quality assurance attention is required. This article presents an exploratory study investigating whether the faults detected by static analysis tools combined with code complexity metrics can be used as software quality indicators and to build pre-release fault prediction models. The combination of code complexity metrics with static analysis fault density was used to predict the pre-release fault density with an accuracy of 78.3%. This combination was also used to separate high and low quality components with a classification accuracy of 79%.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50579090)the National Basic Research Program of China (973 Program, Grant No. 2007CB714102)National Science and Technology Support Program of China (Program for the Eleventh Five-Year Plan, Grant No. 2006BAB04A06)
文摘Owing to the fact that the conventional deterministic back analysis of the permeability coefficient cannot reflect the uncertainties of parameters, including the hydraulic head at the boundary, the permeability coefficient and measured hydraulic head, a stochastic back analysis taking consideration of uncertainties of parameters was performed using the generalized Bayesian method. Based on the stochastic finite element method (SFEM) for a seepage field, the variable metric algorithm and the generalized Bayesian method, formulas for stochastic back analysis of the permeability coefficient were derived. A case study of seepage analysis of a sluice foundation was performed to illustrate the proposed method. The results indicate that, with the generalized Bayesian method that considers the uncertainties of measured hydraulic head, the permeability coefficient and the hydraulic head at the boundary, both the mean and standard deviation of the permeability coefficient can be obtained and the standard deviation is less than that obtained by the conventional Bayesian method. Therefore, the present method is valid and applicable.
文摘Software is an important part of automotive product development, and it is commonly known that software quality assurance consumes considerable effort in safety-critical embedded software development. Increasing the effectiveness and efficiency of this effort thus becomes more and more important. Identifying problematic code areas which are most likely to fail and therefore require most of the quality assurance attention is required. This article presents an exploratory study investigating whether the faults detected by static analysis tools combined with code complexity metrics can be used as software quality indicators and to build pre-release fault prediction models. The combination of code complexity metrics with static analysis fault density was used to predict the pre-release fault density with an accuracy of 78.3%. This combination was also used to separate high and low quality components with a classification accuracy of 79%.