For the low-grade copper sulfide ores with 0.99% of copper, of which 41.5% was primary copper sulfide, and 54.5% was secondary copper sulfide, well-controlled column bioleaching on a novel equipment was carried out to...For the low-grade copper sulfide ores with 0.99% of copper, of which 41.5% was primary copper sulfide, and 54.5% was secondary copper sulfide, well-controlled column bioleaching on a novel equipment was carried out to investigate the optimal conditions of pre-leaching, particle sizes of ores, temperature, spray intensity and strain consortium. Results show that copper extraction of 91.11% can be obtained after 90 d with the optimal p H value of pre-leaching of 0.8; the p H values of pre-leaching significantly affect the final copper extractions. Copper extractions of 93.11%, 91.04% and 80.45% can be obtained for the bioleaching of ores with particles size of 5-8 mm, 5-15 mm and 5-20 mm, respectively. Copper extractions are 83.77% and 91.02% for bioleaching under the conditions of room temperature and 35 oC. Copper extractions are 77.25%, 85.45% and 91.12% for the bioleaching when flow rate of spray was 5 L/(h·m2), 10 L/(h·m2) and 15 L/(h·m2), respectively. Additionally, the strain consortium C3 is the best among the four strain consortia in bioleaching. By considering the energy consumption, the optimal conditions of bioleaching in this work are determined as p H of pre-leaching of 0.8, particles size of 5-15 mm, temperature of 35 ℃, spray intensity of 15 L/(h·m2), and strain consortium C3.展开更多
基金Projects(51374248,51320105006) supported by National Natural Science Foundation of ChinaProject(NCET-13-0595) supported by the Program for New Century Excellent Talents in University,ChinaProject(2014T70692) supported by the China Postdoctoral Science Foundation
文摘For the low-grade copper sulfide ores with 0.99% of copper, of which 41.5% was primary copper sulfide, and 54.5% was secondary copper sulfide, well-controlled column bioleaching on a novel equipment was carried out to investigate the optimal conditions of pre-leaching, particle sizes of ores, temperature, spray intensity and strain consortium. Results show that copper extraction of 91.11% can be obtained after 90 d with the optimal p H value of pre-leaching of 0.8; the p H values of pre-leaching significantly affect the final copper extractions. Copper extractions of 93.11%, 91.04% and 80.45% can be obtained for the bioleaching of ores with particles size of 5-8 mm, 5-15 mm and 5-20 mm, respectively. Copper extractions are 83.77% and 91.02% for bioleaching under the conditions of room temperature and 35 oC. Copper extractions are 77.25%, 85.45% and 91.12% for the bioleaching when flow rate of spray was 5 L/(h·m2), 10 L/(h·m2) and 15 L/(h·m2), respectively. Additionally, the strain consortium C3 is the best among the four strain consortia in bioleaching. By considering the energy consumption, the optimal conditions of bioleaching in this work are determined as p H of pre-leaching of 0.8, particles size of 5-15 mm, temperature of 35 ℃, spray intensity of 15 L/(h·m2), and strain consortium C3.