Silicon films were grown on aluminium-coated glass by inductively coupled plasma CVD at room temperature using a mixture of SiH4 and H2 as the source gas. The microstructure of the films was evaluated using Raman spec...Silicon films were grown on aluminium-coated glass by inductively coupled plasma CVD at room temperature using a mixture of SiH4 and H2 as the source gas. The microstructure of the films was evaluated using Raman spectroscopy, scanning electron microscopy and atomic force microscopy. It was found that the films are composed of columnar grains and their surfaces show a random and uniform distribution of silicon nanocones. Such a microstructure is highly advantageous to the application of the films in solar cells and electron emission devices. Field electron emission measurement of the films demonstrated that the threshold field strength is as low as -9.8V/μm and the electron emission characteristic is reproducible. In addition, a mechanism is suggested for the columnar growth of crystalline silicon films on aluminium-coated glass at room temperature.展开更多
The influences of initial microstructures on the mechanical properties and the recrystallization texture of magnetostrictive 0.1 at% Nb C-doped Fe83 Ga17 alloys were investigated. The directionally solidified columnar...The influences of initial microstructures on the mechanical properties and the recrystallization texture of magnetostrictive 0.1 at% Nb C-doped Fe83 Ga17 alloys were investigated. The directionally solidified columnar-grained structure substantially enhanced the tensile elongation at intermediate temperatures by suppressing fracture along the transverse boundaries. Compared with tensile elongations of 1.0% at 300℃ and 12.0% at 500℃ of the hot-forged equiaxed-grained alloys, the columnar-grained alloys exhibited substantially increased tensile elongations of 21.6% at 300℃ and 46.6% at 500℃. In the slabs for rolling, the introduction of 〈001〉-oriented columnar grains also promotes the secondary recrystallization of Goss grains in the finally annealed sheets, resulting in an improvement of the saturation magnetostriction. For the columnar-grained specimens, the inhomogeneous microstructure and disadvantage in number and size of Goss grains are improved in the primarily annealed sheets, which is beneficial to the abnormal growth of Goss grains during the final annealing process.展开更多
The growth behavior of a columnar crystal in the convective undercooled melt affected by the far-field uniform flow is studied and the asymptotic solution for the interface evolution of the columnar crystal is derived...The growth behavior of a columnar crystal in the convective undercooled melt affected by the far-field uniform flow is studied and the asymptotic solution for the interface evolution of the columnar crystal is derived by means of the asymptotic expansion method. The results obtained reveal that the far-field flow induces a significant change of the temperature around the columnar crystal and the convective flow caused by the far-field flow accelerates the growth velocity of the interface of the growing columnar crystal in the upstream direction and inhibits its growth velocity in the downstream direction. Our results are similar to the experimental data and numerical simulations.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 60776009)
文摘Silicon films were grown on aluminium-coated glass by inductively coupled plasma CVD at room temperature using a mixture of SiH4 and H2 as the source gas. The microstructure of the films was evaluated using Raman spectroscopy, scanning electron microscopy and atomic force microscopy. It was found that the films are composed of columnar grains and their surfaces show a random and uniform distribution of silicon nanocones. Such a microstructure is highly advantageous to the application of the films in solar cells and electron emission devices. Field electron emission measurement of the films demonstrated that the threshold field strength is as low as -9.8V/μm and the electron emission characteristic is reproducible. In addition, a mechanism is suggested for the columnar growth of crystalline silicon films on aluminium-coated glass at room temperature.
基金financially supported by the National Natural Science Foundation of China (No. 51501006)State Key Laboratory for Advanced Metals and Materials (No. 2017Z-11)+1 种基金the Fundamental Research Funds for the Central Universities (No. FRF-GF-17-B2)partly supported by a scholarship from the China Scholarship Council
文摘The influences of initial microstructures on the mechanical properties and the recrystallization texture of magnetostrictive 0.1 at% Nb C-doped Fe83 Ga17 alloys were investigated. The directionally solidified columnar-grained structure substantially enhanced the tensile elongation at intermediate temperatures by suppressing fracture along the transverse boundaries. Compared with tensile elongations of 1.0% at 300℃ and 12.0% at 500℃ of the hot-forged equiaxed-grained alloys, the columnar-grained alloys exhibited substantially increased tensile elongations of 21.6% at 300℃ and 46.6% at 500℃. In the slabs for rolling, the introduction of 〈001〉-oriented columnar grains also promotes the secondary recrystallization of Goss grains in the finally annealed sheets, resulting in an improvement of the saturation magnetostriction. For the columnar-grained specimens, the inhomogeneous microstructure and disadvantage in number and size of Goss grains are improved in the primarily annealed sheets, which is beneficial to the abnormal growth of Goss grains during the final annealing process.
基金Project supported by the Overseas Distinguished Scholar Program by the Ministry of Education of China(Grant No.MS2010BJKJ005)the National Natural Science Foundation of China(Grant No.10972030)the Science and Technology Support Project of Jiangxi,China(Grant No.20112BBE50006)
文摘The growth behavior of a columnar crystal in the convective undercooled melt affected by the far-field uniform flow is studied and the asymptotic solution for the interface evolution of the columnar crystal is derived by means of the asymptotic expansion method. The results obtained reveal that the far-field flow induces a significant change of the temperature around the columnar crystal and the convective flow caused by the far-field flow accelerates the growth velocity of the interface of the growing columnar crystal in the upstream direction and inhibits its growth velocity in the downstream direction. Our results are similar to the experimental data and numerical simulations.