The present work investigates how axial static magnetic field affects the solidification structure and the solute distribution in directionally solidified GCr18Mo steel. Experimental results show that grain refinement...The present work investigates how axial static magnetic field affects the solidification structure and the solute distribution in directionally solidified GCr18Mo steel. Experimental results show that grain refinement and the colunmar to equiaxed transition is enhanced with the increases in the magnetic field intensity (B) and temperature gradient (G) and the decrease in the growth speed. This phenomenon is simultaneously accompanied by more uniformly distributed alloying elements. The corresponding numerical simulations verify a thermoelectric (TE) magnetic convection pattern in the mushy zone due to the interaction between the magnetic field and TE current. The TE magnetic convection in the liquid should be responsible for the motion of dendrite fragments. The TE magnetic force acting on the dendrite is one of the driving forces trigging fragmentation.展开更多
基金financially supported by the Joint Funds of the National Natural Science Foundation of China (No. U1560202)the National Natural Science Foundation of China (Nos. 51604171 and 51690162)+1 种基金the Shanghai Municipal Science and Technology Commission Grant (No. 17JC1400602)the United Innovation Program of Shanghai Commercial Aircraft Engine (Nos. AR910 and AR911)
文摘The present work investigates how axial static magnetic field affects the solidification structure and the solute distribution in directionally solidified GCr18Mo steel. Experimental results show that grain refinement and the colunmar to equiaxed transition is enhanced with the increases in the magnetic field intensity (B) and temperature gradient (G) and the decrease in the growth speed. This phenomenon is simultaneously accompanied by more uniformly distributed alloying elements. The corresponding numerical simulations verify a thermoelectric (TE) magnetic convection pattern in the mushy zone due to the interaction between the magnetic field and TE current. The TE magnetic convection in the liquid should be responsible for the motion of dendrite fragments. The TE magnetic force acting on the dendrite is one of the driving forces trigging fragmentation.