An excellent introduction to the topic of poset matroids is due to Barnabei, Nicoletti and Pezzoli. In this paper, we investigate the rank axioms for poset matroids; thereby we can characterize poset matroids in a “g...An excellent introduction to the topic of poset matroids is due to Barnabei, Nicoletti and Pezzoli. In this paper, we investigate the rank axioms for poset matroids; thereby we can characterize poset matroids in a “global” version and a “pseudo-global” version. Some corresponding properties of combinatorial schemes are also obtained.展开更多
An excellent introduction to the topic of poset matroids is due to M, Barnabei, G, Nicoletti and L. Pezzoli. In this paper, we extensively study the closure operators of poset matroids and obtain the closure axioms fo...An excellent introduction to the topic of poset matroids is due to M, Barnabei, G, Nicoletti and L. Pezzoli. In this paper, we extensively study the closure operators of poset matroids and obtain the closure axioms for poset matroids; thereby we can characterize poset matroids in terms of the closure axioms. Some corresponding properties of combinatorial schemes are also obtained.展开更多
An excellent introduction to the topic of poset matroids is due to M.Barnabei, G. Nicoletti and L. Pezzoli. On the basis of their work, we have obtained the global rankaxioms for poset matroids. In this paper, we stud...An excellent introduction to the topic of poset matroids is due to M.Barnabei, G. Nicoletti and L. Pezzoli. On the basis of their work, we have obtained the global rankaxioms for poset matroids. In this paper, we study the special integral function f and obtain a newclass of poset matroids from the old ones, and then we generalize this result according to theproperties of f. Almost all of these results can be regarded as the application of global rankaxioms for poset matroids. The main results in our paper have, indeed, investigated the restrictionof the basis of the poset matroid, and we give them the corresponding geometric interpretation.展开更多
基金Supported by the National Natural Science Foundation of China (Granted No.103710438)Education Ministry of China (Granted No.02139)
文摘An excellent introduction to the topic of poset matroids is due to Barnabei, Nicoletti and Pezzoli. In this paper, we investigate the rank axioms for poset matroids; thereby we can characterize poset matroids in a “global” version and a “pseudo-global” version. Some corresponding properties of combinatorial schemes are also obtained.
基金This research is supported partially by Education Ministry of China (No. 02139) by National Science Foundation of China(No. 10471038).
文摘An excellent introduction to the topic of poset matroids is due to M, Barnabei, G, Nicoletti and L. Pezzoli. In this paper, we extensively study the closure operators of poset matroids and obtain the closure axioms for poset matroids; thereby we can characterize poset matroids in terms of the closure axioms. Some corresponding properties of combinatorial schemes are also obtained.
基金Supported partially by the National Natural Science Foundation of China(Grant No.10371048)
文摘An excellent introduction to the topic of poset matroids is due to M.Barnabei, G. Nicoletti and L. Pezzoli. On the basis of their work, we have obtained the global rankaxioms for poset matroids. In this paper, we study the special integral function f and obtain a newclass of poset matroids from the old ones, and then we generalize this result according to theproperties of f. Almost all of these results can be regarded as the application of global rankaxioms for poset matroids. The main results in our paper have, indeed, investigated the restrictionof the basis of the poset matroid, and we give them the corresponding geometric interpretation.