Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for opti...Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for optimized utilization,a lot of research has been focusing on how to use the energy efficiently and gain sustainable benefits.The energy storage system is an alternative because it not only deals with regenerative braking energy but also smooths drastic fluctuation of load power profile and optimizes energy management.In this work,we propose a co-phase traction power supply system with super capacitor(CSS_SC)for the purpose of realizing the function of energy management and power quality management in electrified railways.Besides,the coordinated control strategy is presented to match four working modes,including traction,regenerative braking,peak shaving and valley filling.A corresponding simulation model is built in MATLAB/Simulink to verify the feasibility of the proposed system under dynamic working conditions.The results demonstrate that CSS_SC is flexible to deal with four different working conditions and can realize energy saving within the allowable voltage unbalance of 0.008%in simulation in contrast to 1.3%of the standard limit.With such a control strategy,the performance of super capacitor is controlled to comply with efficiency and safety constraints.Finally,a case study demonstrates the improvement in power fluctuation with the valley-to-peak ratio reduced by 20.3%and the daily load factor increased by 17.9%.展开更多
Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system w...Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system without phase splits is proposed in this paper. Three key techniques used in this system have been discussed. First, a combined co-phase traction power supply system is applied at traction substations for compensating negative sequence current and eliminating phase splits at exits of substations; design method and procedure for this system are presented. Second, a new bilateral traction power supply technology is proposed to eliminate the phase split at section post and reduce the influence of equalizing current on the power grid. Meanwhile, power factor should be adjusted to ensure a proper voltage level of the traction network. Third, a seg- mental power supply technology of traction network is used to divide the power supply arms into several segments, and the synchronous measurement and control technology is applied to diagnose faults and their locations quickly and accurately. Thus, the fault impact can be limited to a min- imum degree. In addition, the economy and reliability of the new generation traction power supply system are analyzed.展开更多
A three-phase to single-phase modular multilevel converter based advanced co-phase traction power supply(MMC-ACTPS) system is an effective structure to address the concerns of phase splitting and poor power quality of...A three-phase to single-phase modular multilevel converter based advanced co-phase traction power supply(MMC-ACTPS) system is an effective structure to address the concerns of phase splitting and poor power quality of the conventional electrified railway. Due to the large number of MMCACTPS system modules, I/O resources and computing speed have high requirements on processors. Moreover, the module capacitor balance is challenging because the sorting time is too long when the traditional sorting algorithm for voltage balance is used. To solve the above issues, a digital implementation scheme of flexible power control strategy for three-phase to single-phase MMC-ACTPS system based on field programmable gate array(FPGA), which has sufficient I/O resources, has been proposed. Due to the parallel execution characteristics of the FPGA, the execution time of the controller and the modulator can be greatly reduced compared with a digital signal processor(DSP) + FPGA or DSpace. In addition, an improved sorting algorithm is proposed to reduce the sorting time and the implementation steps are analyzed. Finally, simulation and experimental results are presented to demonstrate the effectiveness and correctness of the proposed control strategy.展开更多
先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)具备天然的热电联供特性,能够有效缓解供热期出现的弃风问题。若能在规划阶段充分考虑运行需求,进而合理地配置储能容量,则能够在解决弃风问题的前提下...先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)具备天然的热电联供特性,能够有效缓解供热期出现的弃风问题。若能在规划阶段充分考虑运行需求,进而合理地配置储能容量,则能够在解决弃风问题的前提下,最大程度对燃煤机组进行清洁替代。为此,该文提出了多热源协同互补的AA-CAES系统容量配置模型。首先本模型在能量输入端引入电锅炉预热压缩机入口空气,以增大压缩机输气系数并提高机组产热量;其次在扩展热源端,通过太阳能反射镜场收集光热,以提高系统储热水平;并在计及储能系统各模块实际运行效率约束之余,以运行总成本最小为目标,计算储能容量配置最优解。再次,分析供热时长及环境温度等因素对投资成本回收年限的影响,并计算不同情况下本模型投资成本的回收年限,得出建设本模型可盈利的硬性条件;最后,基于东北某地区供热期及非供热期典型日负荷及气象数据在IEEE-39节点系统完成算例分析,验证所提模型有效性。展开更多
The universal mathematical model of an engine is established,and an economical zone,in which an engine mainly provides medium output load at medium speed,is presented.Based on the experimental data and the universal m...The universal mathematical model of an engine is established,and an economical zone,in which an engine mainly provides medium output load at medium speed,is presented.Based on the experimental data and the universal model of such an engine above,a mathematical model of a refitted engine is provided.The boundary of the corresponding economical zone is further demarcated,and the optimal operating curve and the operating point of the engine are analyzed.Then,the energy transforming models of the power system are established in the mode of cooling,heating and power(MCHP),the mode of heating and power(MHP)and the mode of electricity powering(MEP).The parameter matching of the power system is optimized according to the transmission ratios of the gear box in the power distribution system.The results show that,in the MCHP,the speed transmission ratio of the engine to the gear box(ies)and the speed transmission ratio of the motor to the gear box(ims)are defined as 2.9 and 1,respectively;in the MHP,when the demand load of the power system is less than the low critical load of the economical zone,the speed transmission ratio of the motor to the engine(ime)is equal to 1,and when the demand load of the power system exceeds the low critical load of the economical zone,ime equals 0.85;in the MEP,the optimal value of ims is defined as 2.5.展开更多
文摘Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for optimized utilization,a lot of research has been focusing on how to use the energy efficiently and gain sustainable benefits.The energy storage system is an alternative because it not only deals with regenerative braking energy but also smooths drastic fluctuation of load power profile and optimizes energy management.In this work,we propose a co-phase traction power supply system with super capacitor(CSS_SC)for the purpose of realizing the function of energy management and power quality management in electrified railways.Besides,the coordinated control strategy is presented to match four working modes,including traction,regenerative braking,peak shaving and valley filling.A corresponding simulation model is built in MATLAB/Simulink to verify the feasibility of the proposed system under dynamic working conditions.The results demonstrate that CSS_SC is flexible to deal with four different working conditions and can realize energy saving within the allowable voltage unbalance of 0.008%in simulation in contrast to 1.3%of the standard limit.With such a control strategy,the performance of super capacitor is controlled to comply with efficiency and safety constraints.Finally,a case study demonstrates the improvement in power fluctuation with the valley-to-peak ratio reduced by 20.3%and the daily load factor increased by 17.9%.
基金supported by the National Natural Science Funds of China (Nos. 51307143 and 51307142)Technology Research and Development Program of China Railway Corporation (No. 2014J009-B)
文摘Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system without phase splits is proposed in this paper. Three key techniques used in this system have been discussed. First, a combined co-phase traction power supply system is applied at traction substations for compensating negative sequence current and eliminating phase splits at exits of substations; design method and procedure for this system are presented. Second, a new bilateral traction power supply technology is proposed to eliminate the phase split at section post and reduce the influence of equalizing current on the power grid. Meanwhile, power factor should be adjusted to ensure a proper voltage level of the traction network. Third, a seg- mental power supply technology of traction network is used to divide the power supply arms into several segments, and the synchronous measurement and control technology is applied to diagnose faults and their locations quickly and accurately. Thus, the fault impact can be limited to a min- imum degree. In addition, the economy and reliability of the new generation traction power supply system are analyzed.
基金supported in part by the National Rail Transportation Electrification and Automation Engineering Technology Research Center (No.NEEC-2019-A04)in part by the National Key R&D Program of China (No.2021YFB2601500)+1 种基金in part by the National Natural Science Foundation of China (No.52077183)the National Science Foundation for Young Scientists of China (No.52207138)。
文摘A three-phase to single-phase modular multilevel converter based advanced co-phase traction power supply(MMC-ACTPS) system is an effective structure to address the concerns of phase splitting and poor power quality of the conventional electrified railway. Due to the large number of MMCACTPS system modules, I/O resources and computing speed have high requirements on processors. Moreover, the module capacitor balance is challenging because the sorting time is too long when the traditional sorting algorithm for voltage balance is used. To solve the above issues, a digital implementation scheme of flexible power control strategy for three-phase to single-phase MMC-ACTPS system based on field programmable gate array(FPGA), which has sufficient I/O resources, has been proposed. Due to the parallel execution characteristics of the FPGA, the execution time of the controller and the modulator can be greatly reduced compared with a digital signal processor(DSP) + FPGA or DSpace. In addition, an improved sorting algorithm is proposed to reduce the sorting time and the implementation steps are analyzed. Finally, simulation and experimental results are presented to demonstrate the effectiveness and correctness of the proposed control strategy.
文摘先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)具备天然的热电联供特性,能够有效缓解供热期出现的弃风问题。若能在规划阶段充分考虑运行需求,进而合理地配置储能容量,则能够在解决弃风问题的前提下,最大程度对燃煤机组进行清洁替代。为此,该文提出了多热源协同互补的AA-CAES系统容量配置模型。首先本模型在能量输入端引入电锅炉预热压缩机入口空气,以增大压缩机输气系数并提高机组产热量;其次在扩展热源端,通过太阳能反射镜场收集光热,以提高系统储热水平;并在计及储能系统各模块实际运行效率约束之余,以运行总成本最小为目标,计算储能容量配置最优解。再次,分析供热时长及环境温度等因素对投资成本回收年限的影响,并计算不同情况下本模型投资成本的回收年限,得出建设本模型可盈利的硬性条件;最后,基于东北某地区供热期及非供热期典型日负荷及气象数据在IEEE-39节点系统完成算例分析,验证所提模型有效性。
基金The Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.2009112TSJ0124)
文摘The universal mathematical model of an engine is established,and an economical zone,in which an engine mainly provides medium output load at medium speed,is presented.Based on the experimental data and the universal model of such an engine above,a mathematical model of a refitted engine is provided.The boundary of the corresponding economical zone is further demarcated,and the optimal operating curve and the operating point of the engine are analyzed.Then,the energy transforming models of the power system are established in the mode of cooling,heating and power(MCHP),the mode of heating and power(MHP)and the mode of electricity powering(MEP).The parameter matching of the power system is optimized according to the transmission ratios of the gear box in the power distribution system.The results show that,in the MCHP,the speed transmission ratio of the engine to the gear box(ies)and the speed transmission ratio of the motor to the gear box(ims)are defined as 2.9 and 1,respectively;in the MHP,when the demand load of the power system is less than the low critical load of the economical zone,the speed transmission ratio of the motor to the engine(ime)is equal to 1,and when the demand load of the power system exceeds the low critical load of the economical zone,ime equals 0.85;in the MEP,the optimal value of ims is defined as 2.5.