Migraine is a common and recurrent chronic disorder.Migraine is often associated with anxiety,depression and other emotional diseases.With the development of physical rehabilitation techniques,the long-term clinical e...Migraine is a common and recurrent chronic disorder.Migraine is often associated with anxiety,depression and other emotional diseases.With the development of physical rehabilitation techniques,the long-term clinical efficacy of rehabilitation in the treatment of migraine and the prevention of recurrence have been widely accepted.This paper reviews the effectiveness of physical rehabilitation therapy in clinical treatment of migraine in recent years.展开更多
Gait disorders drastically affect the quality of life of stroke survivors,making post-stroke rehabilitation an important research focus.Noninvasive brain stimulation has potential in facilitating neuroplasticity and i...Gait disorders drastically affect the quality of life of stroke survivors,making post-stroke rehabilitation an important research focus.Noninvasive brain stimulation has potential in facilitating neuroplasticity and improving post-stroke gait impairment.However,a large inter-individual variability in the response to noninvasive brain stimulation interventions has been increasingly recognized.We first review the neurophysiology of human gait and post-stroke neuroplasticity for gait recovery,and then discuss how noninvasive brain stimulation techniques could be utilized to enhance gait recovery.While post-stroke neuroplasticity for gait recovery is characterized by use-dependent plasticity,it evolves over time,is idiosyncratic,and may develop maladaptive elements.Furthermore,noninvasive brain stimulation has limited reach capability and is facilitative-only in nature.Therefore,we recommend that noninvasive brain stimulation be used adjunctively with rehabilitation training and other concurrent neuroplasticity facilitation techniques.Additionally,when noninvasive brain stimulation is applied for the rehabilitation of gait impairment in stroke survivors,stimulation montages should be customized according to the specific types of neuroplasticity found in each individual.This could be done using multiple mapping techniques.展开更多
文摘Migraine is a common and recurrent chronic disorder.Migraine is often associated with anxiety,depression and other emotional diseases.With the development of physical rehabilitation techniques,the long-term clinical efficacy of rehabilitation in the treatment of migraine and the prevention of recurrence have been widely accepted.This paper reviews the effectiveness of physical rehabilitation therapy in clinical treatment of migraine in recent years.
基金supported by the National Natural Science Foundation of China,No.30973165,81372108a grant from Clinical Research 5010 Program Mission Statement of Sun Yat-Sen University,China,No.2014001
文摘Gait disorders drastically affect the quality of life of stroke survivors,making post-stroke rehabilitation an important research focus.Noninvasive brain stimulation has potential in facilitating neuroplasticity and improving post-stroke gait impairment.However,a large inter-individual variability in the response to noninvasive brain stimulation interventions has been increasingly recognized.We first review the neurophysiology of human gait and post-stroke neuroplasticity for gait recovery,and then discuss how noninvasive brain stimulation techniques could be utilized to enhance gait recovery.While post-stroke neuroplasticity for gait recovery is characterized by use-dependent plasticity,it evolves over time,is idiosyncratic,and may develop maladaptive elements.Furthermore,noninvasive brain stimulation has limited reach capability and is facilitative-only in nature.Therefore,we recommend that noninvasive brain stimulation be used adjunctively with rehabilitation training and other concurrent neuroplasticity facilitation techniques.Additionally,when noninvasive brain stimulation is applied for the rehabilitation of gait impairment in stroke survivors,stimulation montages should be customized according to the specific types of neuroplasticity found in each individual.This could be done using multiple mapping techniques.