A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energ...A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energy inside Al-core and promote rapid pyrolysis of ammonium perchlorate(AP)at a lower temperature in aluminized propellants.The microstructure of Al@Ni-P-Cu demonstrates that a three-layer Ni-P-Cu shell,with the thickness of~100 nm,is uniformly supported byμAl carrier(fuel unit),which has an amorphous surface with a thickness of~2.3 nm(catalytic unit).The peak temperature of AP with the addition of Al@Ni-P-Cu(3.5%)could significantly drop to 316.2℃ at high-temperature thermal decomposition,reduced by 124.3℃,in comparison to that of pure AP with 440.5℃.It illustrated that the introduction of Al@Ni-P-Cu could weaken or even eliminate the obstacle of AP pyrolysis due to its reduction of activation energy with 118.28 kJ/mol.The laser ignition results showed that the ignition delay time of Al@Ni-P-Cu/AP mixture with 78 ms in air is shorter than that of Al@Ni-P/AP(118 ms),decreased by 33.90%.Those astonishing breakthroughs were attributed to the synergistic effects of adequate active sites on amorphous surface and oxidation exothermic reactions(7597.7 J/g)of Al@Ni-P-Cu,resulting in accelerated mass and/or heat transfer rate to catalyze AP pyrolysis and combustion.Moreover,it is believed to provide an alternative Al-based combustion catalyst for propellant designer,to promote the development the propellants toward a higher energy.展开更多
To enhance the catalytic activity of copper ferrite(CuFe_(2)O_(4))nanoparticle and promote its application as combustion catalyst,a low-cost silicon dioxide(SiO_(2))carrier was employed to construct a novel CuFe_(2)O_...To enhance the catalytic activity of copper ferrite(CuFe_(2)O_(4))nanoparticle and promote its application as combustion catalyst,a low-cost silicon dioxide(SiO_(2))carrier was employed to construct a novel CuFe_(2)O_(4)/SiO_(2)binary composites via solvothermal method.The phase structure,morphology and catalytic activity of CuFe_(2)O_(4)/SiO_(2)composites were studied firstly,and thermal decomposition,combustion and safety performance of ammonium perchlorate(AP)and 1,3,5-trinitroperhydro-1,3,5-triazine(RDX)with it affecting were then systematically analyzed.The results show that CuFe_(2)O_(4)/SiO_(2)composite can remarkably either advance the decomposition peak temperature of AP and RDX,or reduce the apparent activation energy at their main decomposition zone.Moreover,the flame propagation rate of RDX was promoted by about 2.73 times with SiO_(2)content of 3 wt%,and safety property of energetic component was also improved greatly,in which depressing the electrostatic discharge sensitivity of pure RDX by about 1.89 times.In addition,the effective range of SiO_(2)carrier content in the binary catalyst is found to be 3 to 5 wt%.Therefore,SiO_(2)opens a new insight on the design of combustion catalyst carrier and will promote the application of CuFe_(2)O_(4)catalyst in solid propellant.展开更多
Combustion catalyst La_(0.8)Sr_(0.2)CoO_3 (LSC) is expected to possess relatively high activity for the oxidation of carbon monoxide and many hydrocarbons. If γ-Al_2O_3 is used as its support, cobalt ions can easily ...Combustion catalyst La_(0.8)Sr_(0.2)CoO_3 (LSC) is expected to possess relatively high activity for the oxidation of carbon monoxide and many hydrocarbons. If γ-Al_2O_3 is used as its support, cobalt ions can easily react with γ-Al_2O_3 at not very high temperature to form spinel CoAl_2O_4 or spinel-like, which decreases the activity of the combustion catalyst. In this paper, MgAl_2O_4 and CaAl_2O_4 were pre-coated on γ-Al_2O_3 by impregnation respectively, which formed compound support for LSC. It is shown that, when MgAl_2O_4 layer is covered on the surface of MgAl_2O_4 by impregnation, the entering of cobalt ions into γ-Al_2O_3 lattice is restrained, then LSC formed on the surface of MgAl_2O_4, which leads to a good catalytic activity of xylene complete oxidation. But the layer of MgAl_2O_4 should be thick enough to reach 30% (mass fraction) MgO in the support due to large size particle of MgAl_2O_4 crystalline. If polyvinyl alcohol (PVA) is added into the impregnation solution adequately, MgAl_2O_4 particles formed on the surface of γ-Al_2O_3 are getting smaller, and less amount of MgAl_2O_4 is needed to cover up the surface of γ-Al_2O_3. If CaAl_2O_4 layer substituted for MgAl_2O_4, more closed cover is obtained in virtue of fine particles of CaAl_2O_4. The activity examination shows that smaller particles of MgAl_2O_4 or CaAl_2O_4 can be more effective to hinder cobalt ions entering the lattice of γ-Al_2O_3, and better activities will be obtained.展开更多
By using solution combustion synthesis method, several Li-Co delafossite catalysts were prepared via a highly exothermic and self-sustaining reaction. The prepared catalysts were characterized by XRD, SEM and the cata...By using solution combustion synthesis method, several Li-Co delafossite catalysts were prepared via a highly exothermic and self-sustaining reaction. The prepared catalysts were characterized by XRD, SEM and the catalytic activities of the catalysts were evaluated by small sample experiment. It is shown that under loose contact conditions this catalyst can catalyze soot combustion at 360 ℃, and the best prepared catalyst Li Co0.9O2 can ignite soot combustion below 300 ℃. In the incompletely synthesized catalysts the Co cations shift to higher electrovalence, so the number of the surface adsorbed oxygen(O-) of the prepared delafossite catalysts increase and Li Co0.9O2 has the optimum catalytic activity.展开更多
Copper( Ⅱ ) resercyiic acid(CuRes) nanoparticles were synthesized by using reactive precipitation method with resorcylic acid and blue copperas as the raw material in a rotating packed bed. The sample obtained wa...Copper( Ⅱ ) resercyiic acid(CuRes) nanoparticles were synthesized by using reactive precipitation method with resorcylic acid and blue copperas as the raw material in a rotating packed bed. The sample obtained was characterized by using X-ray diffraction(XRD), transmission electron micrescopy(TEM), Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analyses (TG), and element analysis. In addition, the catalytic activity of CuRes nanoparticles on the thermal decomposition of nitrocellulose-nitroglycerine(NC-NG) was also determined via DSC. The results show that the spherical nanoparticles with a diameter of 20 nm were obtained in ethanol solution. The peak temperature of the thermal decomposition of NC-NG-CuRes decreases by 3℃ compared with that of normal CuRes, and the decomposition enthalpy is increased by 735 J/g, and therefore, it is reasonable to assume that CuRes nanoparticles have a better catalytic activity.展开更多
Heterogeneous catalytic combustion provides a feasible technique for high efficient methane utilization.Perovskites ABO_3-type materials have received renewed attention as a potential alternative for noble metals supp...Heterogeneous catalytic combustion provides a feasible technique for high efficient methane utilization.Perovskites ABO_3-type materials have received renewed attention as a potential alternative for noble metals supported catalysts in catalytic methane combustion due to excellent hydrothermal stability and sulfur resistance. Recently, the emergence of nanostructured perovskite oxides(such as threedimensional ordered nanostructure, nano-array structure) with outstanding catalytic activity has further driven methane catalytic combustion research into spotlight. In this review, we summarize the recent development of nanostructured perovskite oxide catalysts for methane combustion, and shed some light on the rational design of high efficient nanostructured perovskite catalysts via lattice oxygen activation,lattice oxygen mobility and materials morphology engineering. The emergent issues needed to be addressed on perovskite catalysts were also proposed.展开更多
NiMnO3 perovskite catalysts supported on cordierite modified by CexZr(1-x)O2 coatings were prepared using impregnation and sol-gel methods for catalytic combustion of single/double component VOCs at different concen...NiMnO3 perovskite catalysts supported on cordierite modified by CexZr(1-x)O2 coatings were prepared using impregnation and sol-gel methods for catalytic combustion of single/double component VOCs at different concentrations and GHSV of 15,000 h^(-1), which were characterized by BET, XRD, SEM, FT-IR, H2-TPR and O2-TPD. After coating modification, the specific surface area of catalysts is improved obviously.Among the catalysts, the Ce(0.75)Zr(0.25)O2 coating modified NiMnO3 catalyst exhibits the best catalytic activity for VOCs combustion with 95.6% conversion at 275 ℃ and has stable activity when catalyst is embalmed at 800 ℃. In addition, the catalyst also presents the excellent water-resistant and conversion stability over time-on-stream condition. The reason is that Ce(0.75)Zr(0.25)O2 coating can promote more lattice distortion and defects and smaller crystal size, which improve oxygen transfer capability and dispersion of active component.展开更多
Mo-modified Pd/Al2O3catalysts were prepared by an impregnation method and tested for the catalytic combustion of benzene. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction(XRD), X-ray p...Mo-modified Pd/Al2O3catalysts were prepared by an impregnation method and tested for the catalytic combustion of benzene. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), temperatureprogrammed desorption of NH3(NH3-TPD), H2temperature-programmed reduction(H2-TPR), and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM). The results showed that the addition of Mo effectively improved the activity and stability of the Pd/Al2O3catalyst by increasing the dispersion of Pd active components, changing the partial oxidation state of palladium and increasing the oxygen species concentration on the surface of catalyst. In the case of the Pd-Mo/Al2O3catalyst,benzene conversion of 90% was obtained at temperatures as low as 190°C, which was 45°C lower than that for similar performance with the Pd/Al2O3catalyst. Moreover, the 1.0% Pd-5% Mo/Al2O3catalyst was more active than the 2.0% Pd/Al2O3catalyst. It was concluded that Pd and Mo have a synergistic effect in benzene catalytic combustion.展开更多
The effect of Zr on the catalytic performance of Pd/y-A1203 for the methane combustion was investigated. The results show that the addition of Zr can improve the activity and stability of Pd/γ-Al2O3 catalyst, which, ...The effect of Zr on the catalytic performance of Pd/y-A1203 for the methane combustion was investigated. The results show that the addition of Zr can improve the activity and stability of Pd/γ-Al2O3 catalyst, which, based on the catalyst characterization (N2 adsorption, XRD, CO- Chemisorption, XPS, CHa-TPR and O2-TPO), is ascribed to the interaction between Pd and Zr. The active phase of methane combustion over supported palladium catalyst is the Pd^0/Pd^2+ mixture. Zr addition inhibits Pd aggregation and enhances the redox properties of active phase Pd^0/ Pd^2+. H2 reduction could effectively reduce the oxidation degree of Pd species and regenerate the active sites (Pd^0/ pd^2+).展开更多
Al2O3 and La2O3 layers were coated respectively on a FeCrAl alloy foil by a dip-coating technique and used as the second support for the active LaMnAl11O19 hexaaluminate (HA) phase in a metallic monolithic catalyst....Al2O3 and La2O3 layers were coated respectively on a FeCrAl alloy foil by a dip-coating technique and used as the second support for the active LaMnAl11O19 hexaaluminate (HA) phase in a metallic monolithic catalyst. A sample without an intermediate layer was employed for comparison. The properties and performances of the catalyst were examined with X-ray diffraction (XRD), scanning electron microscopy (SEM), ultrasonic vibration and thermal shock techniques. Methane catalytic combustion was performed to evaluate the activity of the catalyst. The results showed that the activity and adhesion of the HA to the alloy foil could be improved with the introduction of the intermediate layer. Al2O3 provided a strong adhesion, while La2O3 weakened the interaction between the active component and alloy foil. For the activity, the catalysts made with the two different intermediate materials also showed difference.展开更多
Co-Mo/γ-Al2O3-TiO2 hydrodesulfurization (HDS) catalyst samples prepared by a urea matrix combustion (UMxC) method, were evaluated in a stainless tubular fixed-bed reactor, with thiophene, benzothiophene and diben...Co-Mo/γ-Al2O3-TiO2 hydrodesulfurization (HDS) catalyst samples prepared by a urea matrix combustion (UMxC) method, were evaluated in a stainless tubular fixed-bed reactor, with thiophene, benzothiophene and dibenzothiophene in xylene as model feedstocks. The samples were pre-sulfurized using a cyclohex- ane solution of 3% CS2 and then tested for the HDS reaction. The test results were compared with catalysts prepared by conventional methods involving sequential impregnation (SI) and co-impregnation (CI). The catalysts were characterized using X-ray diffraction (XRD), laser Raman spectroscopy (LRS), high resolu- tion transmission electron microscopy (HRTEM) and N2 physisorption, showing that the UMxC catalyst had higher pore volume and surface area than those prepared by the CI and SI methods. The UMxC method increased metal loading and avoided formation of inert phase, e.g., β-CoMoO4, for the HDS reaction, sug- gesting that UMxC method is superior to the conventional impregnation techniques. TiO2 promoter made particles on the catalyst surface closer and alleviated the interaction between molybdenum oxide and the support, and facilitated the formation of well-dispersed Co- and Mo-oxo species on catalyst surface, thus resulting in higher HDS catalytic activity than pure γ-Al2O3 support without modifiers. Consequently, the addition of TiO2 obviously improved the HDS conversion of dibenzothiophene.展开更多
A novel energetic combustion catalyst, 4-amino-3,S-dinitropyrazole copper salt ([Cu(adnp)2(H2O)2]), was synthesized in a yield of 93.6% for the first time. The single crystal of [Cu(adnp)2(H2O)2] was determi...A novel energetic combustion catalyst, 4-amino-3,S-dinitropyrazole copper salt ([Cu(adnp)2(H2O)2]), was synthesized in a yield of 93.6% for the first time. The single crystal of [Cu(adnp)2(H2O)2] was determined by single crystal X-ray diffraction. It crystallizes in a triclinic system, space group p^-1 with crystal parameters a = 5.541(3) A, b = 7.926(4) A, c = 10.231(5) A,β = 101.372(8)°, V = 398.3(3) A3, Z = 1, μ = 1.467 mm^-1, F(0 0 0) = 243, and Dc = 2.000 g cm^-3. The thermal behavior and non-isothermal decomposition reaction kinetics of [Cu(adnp)2(H2O)2] were studied by means of different heating rate differential scanning calorimetry (DSC). The kinetic equation of major exothermic decomposition reaction for [Cu(adnp)2(H2O)2] was obtained. The entropy of activation (△S≠), enthalpy of activation (△H≠), free energy of activation (△G≠), the self-accelerating decomposition temperature (TSADT) and the critical temperature of thermal explosion (Tb) are 59.42 j mol^-1 K^-1, 169.5 kJ mol^-1, 1141.26 kJ mol ^-1 457.3 K and 468.1 K, respectively.展开更多
A novel energetic combustion catalyst, 1,8-dihydroxy-4,5-dinitroanthraquinone manganese salt (DHDNEMn), was synthesized by virtue of the metathesis reaction in a yield of 91%, and its structure was characterized by ...A novel energetic combustion catalyst, 1,8-dihydroxy-4,5-dinitroanthraquinone manganese salt (DHDNEMn), was synthesized by virtue of the metathesis reaction in a yield of 91%, and its structure was characterized by IR, element analysis and differential scanning calorimetry(DSC). The thermal decomposition reaction kinetics was studied by means of different heating rate DSC. The results show that the apparent activation energy and pre-exponential factor of the exothermic decomposition reaction of DHDNEMn obtained by Kissinger's method are 162.3 kJ/mol and 1011.8 s^-1, respectively. The kinetic equation of major exothermic decomposition reaction of DHDNEMn is dα/dT= 10^118/β 2/5(1-α)[-ln(1-α)[-ln(1-α)]^3/5 exp(-1.623×10^5/RT). The entropy of activation(△S^≠), enthalpy of activation(△H^≠) and free energy of activation(A△G^≠) of the first thermal decomposition are -24.49 J·mol^-1·K^-1, 185.20 kJ/mol and 199.29 kJ/mol(T=575.5 K), respectively. The self-accelerating decomposition temperature(TSADT) and critical temperature of thermal explosion(Tb) are 562.9 and 580.0 K, respectively. The above-mentioned information on the thermal behavior is quite useful for analyzing and evaluating the stability and thermal safety of DHDNEMn.展开更多
基金supported by the National Natural Science Foundation of China,China(Grant Nos.U20B2018,U21B2086,11972087)。
文摘A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energy inside Al-core and promote rapid pyrolysis of ammonium perchlorate(AP)at a lower temperature in aluminized propellants.The microstructure of Al@Ni-P-Cu demonstrates that a three-layer Ni-P-Cu shell,with the thickness of~100 nm,is uniformly supported byμAl carrier(fuel unit),which has an amorphous surface with a thickness of~2.3 nm(catalytic unit).The peak temperature of AP with the addition of Al@Ni-P-Cu(3.5%)could significantly drop to 316.2℃ at high-temperature thermal decomposition,reduced by 124.3℃,in comparison to that of pure AP with 440.5℃.It illustrated that the introduction of Al@Ni-P-Cu could weaken or even eliminate the obstacle of AP pyrolysis due to its reduction of activation energy with 118.28 kJ/mol.The laser ignition results showed that the ignition delay time of Al@Ni-P-Cu/AP mixture with 78 ms in air is shorter than that of Al@Ni-P/AP(118 ms),decreased by 33.90%.Those astonishing breakthroughs were attributed to the synergistic effects of adequate active sites on amorphous surface and oxidation exothermic reactions(7597.7 J/g)of Al@Ni-P-Cu,resulting in accelerated mass and/or heat transfer rate to catalyze AP pyrolysis and combustion.Moreover,it is believed to provide an alternative Al-based combustion catalyst for propellant designer,to promote the development the propellants toward a higher energy.
基金the National Nature Science Foundation of China(Grant Nos.21673178,22105160)the Natural Science Foundation of Shaanxi Province(Grant No.2023-JC-ZD-07)+1 种基金the Foundation of Key Laboratory of Defense Science and technology(Grant No.6142603032213)the Key Science and Technology Innovation Team of Shaanxi Province(Grant No.2022TD-33).
文摘To enhance the catalytic activity of copper ferrite(CuFe_(2)O_(4))nanoparticle and promote its application as combustion catalyst,a low-cost silicon dioxide(SiO_(2))carrier was employed to construct a novel CuFe_(2)O_(4)/SiO_(2)binary composites via solvothermal method.The phase structure,morphology and catalytic activity of CuFe_(2)O_(4)/SiO_(2)composites were studied firstly,and thermal decomposition,combustion and safety performance of ammonium perchlorate(AP)and 1,3,5-trinitroperhydro-1,3,5-triazine(RDX)with it affecting were then systematically analyzed.The results show that CuFe_(2)O_(4)/SiO_(2)composite can remarkably either advance the decomposition peak temperature of AP and RDX,or reduce the apparent activation energy at their main decomposition zone.Moreover,the flame propagation rate of RDX was promoted by about 2.73 times with SiO_(2)content of 3 wt%,and safety property of energetic component was also improved greatly,in which depressing the electrostatic discharge sensitivity of pure RDX by about 1.89 times.In addition,the effective range of SiO_(2)carrier content in the binary catalyst is found to be 3 to 5 wt%.Therefore,SiO_(2)opens a new insight on the design of combustion catalyst carrier and will promote the application of CuFe_(2)O_(4)catalyst in solid propellant.
文摘Combustion catalyst La_(0.8)Sr_(0.2)CoO_3 (LSC) is expected to possess relatively high activity for the oxidation of carbon monoxide and many hydrocarbons. If γ-Al_2O_3 is used as its support, cobalt ions can easily react with γ-Al_2O_3 at not very high temperature to form spinel CoAl_2O_4 or spinel-like, which decreases the activity of the combustion catalyst. In this paper, MgAl_2O_4 and CaAl_2O_4 were pre-coated on γ-Al_2O_3 by impregnation respectively, which formed compound support for LSC. It is shown that, when MgAl_2O_4 layer is covered on the surface of MgAl_2O_4 by impregnation, the entering of cobalt ions into γ-Al_2O_3 lattice is restrained, then LSC formed on the surface of MgAl_2O_4, which leads to a good catalytic activity of xylene complete oxidation. But the layer of MgAl_2O_4 should be thick enough to reach 30% (mass fraction) MgO in the support due to large size particle of MgAl_2O_4 crystalline. If polyvinyl alcohol (PVA) is added into the impregnation solution adequately, MgAl_2O_4 particles formed on the surface of γ-Al_2O_3 are getting smaller, and less amount of MgAl_2O_4 is needed to cover up the surface of γ-Al_2O_3. If CaAl_2O_4 layer substituted for MgAl_2O_4, more closed cover is obtained in virtue of fine particles of CaAl_2O_4. The activity examination shows that smaller particles of MgAl_2O_4 or CaAl_2O_4 can be more effective to hinder cobalt ions entering the lattice of γ-Al_2O_3, and better activities will be obtained.
基金Funded by the National Natural Science Foundation of China(No.U1230107)
文摘By using solution combustion synthesis method, several Li-Co delafossite catalysts were prepared via a highly exothermic and self-sustaining reaction. The prepared catalysts were characterized by XRD, SEM and the catalytic activities of the catalysts were evaluated by small sample experiment. It is shown that under loose contact conditions this catalyst can catalyze soot combustion at 360 ℃, and the best prepared catalyst Li Co0.9O2 can ignite soot combustion below 300 ℃. In the incompletely synthesized catalysts the Co cations shift to higher electrovalence, so the number of the surface adsorbed oxygen(O-) of the prepared delafossite catalysts increase and Li Co0.9O2 has the optimum catalytic activity.
基金the National Natural Science Foundation of China(No 20576128)partially supported by the Natural ScienceFoundation of Shanxi Province(No 20051015)
文摘Copper( Ⅱ ) resercyiic acid(CuRes) nanoparticles were synthesized by using reactive precipitation method with resorcylic acid and blue copperas as the raw material in a rotating packed bed. The sample obtained was characterized by using X-ray diffraction(XRD), transmission electron micrescopy(TEM), Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analyses (TG), and element analysis. In addition, the catalytic activity of CuRes nanoparticles on the thermal decomposition of nitrocellulose-nitroglycerine(NC-NG) was also determined via DSC. The results show that the spherical nanoparticles with a diameter of 20 nm were obtained in ethanol solution. The peak temperature of the thermal decomposition of NC-NG-CuRes decreases by 3℃ compared with that of normal CuRes, and the decomposition enthalpy is increased by 735 J/g, and therefore, it is reasonable to assume that CuRes nanoparticles have a better catalytic activity.
基金the financial support from the Recruitment Program of Global Young Experts Start-up Fundthe Program of Introducing Talents of Discipline to Universities of China(111 Program, No. B17019)
文摘Heterogeneous catalytic combustion provides a feasible technique for high efficient methane utilization.Perovskites ABO_3-type materials have received renewed attention as a potential alternative for noble metals supported catalysts in catalytic methane combustion due to excellent hydrothermal stability and sulfur resistance. Recently, the emergence of nanostructured perovskite oxides(such as threedimensional ordered nanostructure, nano-array structure) with outstanding catalytic activity has further driven methane catalytic combustion research into spotlight. In this review, we summarize the recent development of nanostructured perovskite oxide catalysts for methane combustion, and shed some light on the rational design of high efficient nanostructured perovskite catalysts via lattice oxygen activation,lattice oxygen mobility and materials morphology engineering. The emergent issues needed to be addressed on perovskite catalysts were also proposed.
基金Project supported by the Science and Technology Department of Jiangsu Province(BE2016769)the Natural Science Foundation of China(51172107)+2 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China(14KJB430014)Open fund by Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials(KFK1503)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘NiMnO3 perovskite catalysts supported on cordierite modified by CexZr(1-x)O2 coatings were prepared using impregnation and sol-gel methods for catalytic combustion of single/double component VOCs at different concentrations and GHSV of 15,000 h^(-1), which were characterized by BET, XRD, SEM, FT-IR, H2-TPR and O2-TPD. After coating modification, the specific surface area of catalysts is improved obviously.Among the catalysts, the Ce(0.75)Zr(0.25)O2 coating modified NiMnO3 catalyst exhibits the best catalytic activity for VOCs combustion with 95.6% conversion at 275 ℃ and has stable activity when catalyst is embalmed at 800 ℃. In addition, the catalyst also presents the excellent water-resistant and conversion stability over time-on-stream condition. The reason is that Ce(0.75)Zr(0.25)O2 coating can promote more lattice distortion and defects and smaller crystal size, which improve oxygen transfer capability and dispersion of active component.
基金supported by the National High-Tech Research and Development Program (863) of China (No. 2008AA06XK1480855)
文摘Mo-modified Pd/Al2O3catalysts were prepared by an impregnation method and tested for the catalytic combustion of benzene. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), temperatureprogrammed desorption of NH3(NH3-TPD), H2temperature-programmed reduction(H2-TPR), and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM). The results showed that the addition of Mo effectively improved the activity and stability of the Pd/Al2O3catalyst by increasing the dispersion of Pd active components, changing the partial oxidation state of palladium and increasing the oxygen species concentration on the surface of catalyst. In the case of the Pd-Mo/Al2O3catalyst,benzene conversion of 90% was obtained at temperatures as low as 190°C, which was 45°C lower than that for similar performance with the Pd/Al2O3catalyst. Moreover, the 1.0% Pd-5% Mo/Al2O3catalyst was more active than the 2.0% Pd/Al2O3catalyst. It was concluded that Pd and Mo have a synergistic effect in benzene catalytic combustion.
基金Acknowledgements This research was supported by the National High Technology Research and Development Program of China (Nos. 2010AA064904 and 2012AA062702) and the National Natural Science Foundation of China (Grant No. 21177006).
文摘The effect of Zr on the catalytic performance of Pd/y-A1203 for the methane combustion was investigated. The results show that the addition of Zr can improve the activity and stability of Pd/γ-Al2O3 catalyst, which, based on the catalyst characterization (N2 adsorption, XRD, CO- Chemisorption, XPS, CHa-TPR and O2-TPO), is ascribed to the interaction between Pd and Zr. The active phase of methane combustion over supported palladium catalyst is the Pd^0/Pd^2+ mixture. Zr addition inhibits Pd aggregation and enhances the redox properties of active phase Pd^0/ Pd^2+. H2 reduction could effectively reduce the oxidation degree of Pd species and regenerate the active sites (Pd^0/ pd^2+).
基金Project supported by the National Natural Science Foundation of China (20901056)the Natural Science Foundation of Tianjin (11JCYBJC04000)+2 种基金the Program of Introducing Talents to the University Disciplines (B06006)the Program for Changjiang Scholars and Innovative Research Teams in Universities (IRT 0641)Seed Foundation of Tianjin University
文摘Al2O3 and La2O3 layers were coated respectively on a FeCrAl alloy foil by a dip-coating technique and used as the second support for the active LaMnAl11O19 hexaaluminate (HA) phase in a metallic monolithic catalyst. A sample without an intermediate layer was employed for comparison. The properties and performances of the catalyst were examined with X-ray diffraction (XRD), scanning electron microscopy (SEM), ultrasonic vibration and thermal shock techniques. Methane catalytic combustion was performed to evaluate the activity of the catalyst. The results showed that the activity and adhesion of the HA to the alloy foil could be improved with the introduction of the intermediate layer. Al2O3 provided a strong adhesion, while La2O3 weakened the interaction between the active component and alloy foil. For the activity, the catalysts made with the two different intermediate materials also showed difference.
文摘Co-Mo/γ-Al2O3-TiO2 hydrodesulfurization (HDS) catalyst samples prepared by a urea matrix combustion (UMxC) method, were evaluated in a stainless tubular fixed-bed reactor, with thiophene, benzothiophene and dibenzothiophene in xylene as model feedstocks. The samples were pre-sulfurized using a cyclohex- ane solution of 3% CS2 and then tested for the HDS reaction. The test results were compared with catalysts prepared by conventional methods involving sequential impregnation (SI) and co-impregnation (CI). The catalysts were characterized using X-ray diffraction (XRD), laser Raman spectroscopy (LRS), high resolu- tion transmission electron microscopy (HRTEM) and N2 physisorption, showing that the UMxC catalyst had higher pore volume and surface area than those prepared by the CI and SI methods. The UMxC method increased metal loading and avoided formation of inert phase, e.g., β-CoMoO4, for the HDS reaction, sug- gesting that UMxC method is superior to the conventional impregnation techniques. TiO2 promoter made particles on the catalyst surface closer and alleviated the interaction between molybdenum oxide and the support, and facilitated the formation of well-dispersed Co- and Mo-oxo species on catalyst surface, thus resulting in higher HDS catalytic activity than pure γ-Al2O3 support without modifiers. Consequently, the addition of TiO2 obviously improved the HDS conversion of dibenzothiophene.
基金the National Science Foundation of China(No.21173163 and No. 21303133)
文摘A novel energetic combustion catalyst, 4-amino-3,S-dinitropyrazole copper salt ([Cu(adnp)2(H2O)2]), was synthesized in a yield of 93.6% for the first time. The single crystal of [Cu(adnp)2(H2O)2] was determined by single crystal X-ray diffraction. It crystallizes in a triclinic system, space group p^-1 with crystal parameters a = 5.541(3) A, b = 7.926(4) A, c = 10.231(5) A,β = 101.372(8)°, V = 398.3(3) A3, Z = 1, μ = 1.467 mm^-1, F(0 0 0) = 243, and Dc = 2.000 g cm^-3. The thermal behavior and non-isothermal decomposition reaction kinetics of [Cu(adnp)2(H2O)2] were studied by means of different heating rate differential scanning calorimetry (DSC). The kinetic equation of major exothermic decomposition reaction for [Cu(adnp)2(H2O)2] was obtained. The entropy of activation (△S≠), enthalpy of activation (△H≠), free energy of activation (△G≠), the self-accelerating decomposition temperature (TSADT) and the critical temperature of thermal explosion (Tb) are 59.42 j mol^-1 K^-1, 169.5 kJ mol^-1, 1141.26 kJ mol ^-1 457.3 K and 468.1 K, respectively.
基金Supported by the National Natural Science Foundation of China(Nos.21173163, 21303133).
文摘A novel energetic combustion catalyst, 1,8-dihydroxy-4,5-dinitroanthraquinone manganese salt (DHDNEMn), was synthesized by virtue of the metathesis reaction in a yield of 91%, and its structure was characterized by IR, element analysis and differential scanning calorimetry(DSC). The thermal decomposition reaction kinetics was studied by means of different heating rate DSC. The results show that the apparent activation energy and pre-exponential factor of the exothermic decomposition reaction of DHDNEMn obtained by Kissinger's method are 162.3 kJ/mol and 1011.8 s^-1, respectively. The kinetic equation of major exothermic decomposition reaction of DHDNEMn is dα/dT= 10^118/β 2/5(1-α)[-ln(1-α)[-ln(1-α)]^3/5 exp(-1.623×10^5/RT). The entropy of activation(△S^≠), enthalpy of activation(△H^≠) and free energy of activation(A△G^≠) of the first thermal decomposition are -24.49 J·mol^-1·K^-1, 185.20 kJ/mol and 199.29 kJ/mol(T=575.5 K), respectively. The self-accelerating decomposition temperature(TSADT) and critical temperature of thermal explosion(Tb) are 562.9 and 580.0 K, respectively. The above-mentioned information on the thermal behavior is quite useful for analyzing and evaluating the stability and thermal safety of DHDNEMn.