Spectral quantitative fingerprinting including ultraviolet (UV) and Fourier transform infrared (FT-IR) coupled with combustion heat (CH) analytical techniques was employed and compared for rapid screening quality grad...Spectral quantitative fingerprinting including ultraviolet (UV) and Fourier transform infrared (FT-IR) coupled with combustion heat (CH) analytical techniques was employed and compared for rapid screening quality grade and discriminating San-Huang Tablets (SHT) of different commercial brands. The systematic quantified fingerprint method (SQFM) was applied to evaluate, qualitatively and quantitatively, the quality consistency of the herbal preparation. It was possible to deduce that the quantitative similarity analysis by SQFM was enabled to make a good discrimination of the tested samples. It was a particularly useful method for the overall quality evaluation of herbal medicine and their preparations.展开更多
The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application i...The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.展开更多
Objective To explore the relationship between different components of fine particulate matter(PM2.5) emitted from coal combustion and their cytotoxic effect in the vascular endothelial cells. Methods Coal-fired PM2....Objective To explore the relationship between different components of fine particulate matter(PM2.5) emitted from coal combustion and their cytotoxic effect in the vascular endothelial cells. Methods Coal-fired PM2.5 was sampled using a fixed-source dilution channel and flow sampler. The sample components were analyzed by ion chromatography and inductively coupled plasma atomic emission spectroscopy(ICP-AES). The PM2.5 suspension was extracted using an ultrasonic water-bath method and then human umbilical vein endothelial cells(EA.hy926) were treated with various concentrations of the PM2.5 suspension. Cell proliferation, oxidative DNA damage, and global DNA methylation levels were used to measure the cellular toxicity of PM2.5 emitted from coal combustion. Results Compared to other types of coal-fired PM2.5 preparations, the PM2.5 suspension from Yinchuan coal had the highest cytotoxicity. PM2.5 suspension from Datong coal had the highest toxic effect while that from Yinchuan coal had the lowest. Exposure to coal-fired PM2.5 from Jingxi coal resulted in lower 8-hydroxy-2’-deoxyguanosine(8-OHd G) levels. At the same dose, PM2.5 emitted from coal combustion could produce more severe DNA impairment compared to that produced by carbon black. Cell survival rate was negatively correlated with chloride and potassium ions content. The 5-methylcytosine(5-m C) level was positively correlated with Mn and negatively correlated with Zn levels. The 8-OHd G% level was positively correlated with both Mn and Fe. Conclusion PM2.5 emitted from coal combustion can decrease cell viability, increase global DNA methylation, and cause oxidative DNA damage in EA.hy926 cells. Metal components may be important factors that influence cellular toxicity.展开更多
In this study,a detailed analysis of the combustion behaviors of the lithium iron phosphate(LFP)and lithium manganese oxide(LMO)batteries used in electric bicycles was conducted.This research included quantitative mea...In this study,a detailed analysis of the combustion behaviors of the lithium iron phosphate(LFP)and lithium manganese oxide(LMO)batteries used in electric bicycles was conducted.This research included quantitative measurements of the combustion duration,flame height,combustion temperature,heat release rate,and total heat release.The results indicated that LMO batteries exhibited higher combustion temperatures of 600–700°C,flame heights of 70–75 cm,a significantly higher heat release rate of40.1 k W(12 Ah),and a total heat release of 1.04 MJ(12 Ah)compared to LFP batteries with the same capacity.Based on these experimental results,a normalized total heat release(NORTHR)parameter was proposed,demonstrating good universality for batteries with different capacities.Utilizing this parameter,quantitative calculations and optimization of the extinguishing agent dosage were conducted for fires involving these two types of batteries,and the method was validated by extinguishing fires for these two types of battery packs with water-based extinguishing fluids.展开更多
Boron has been considered a promising powdered metal fuel for enhancing composite propellants'energy output due to its high energy density.However,the high ignition temperature and low combustion efficiency limit ...Boron has been considered a promising powdered metal fuel for enhancing composite propellants'energy output due to its high energy density.However,the high ignition temperature and low combustion efficiency limit the application of boron powder due to the high boiling point of the boron oxide layer.Much research is ongoing to overcome these shortcomings,and one potential approach is to introduce a small quantity of metal oxide additives to promote the reaction of boron.This study prepared boron-rich fuels with 10 wt%of eight nano-metal oxide additives by mechanical ball milling.The effect of metal oxides on the thermo-oxidation,ignition,and combustion properties of boron powder was comprehensively studied by the thermogravimetric analysis(TG),the electrically heated filament setup(T-jump),and the laser-induced combustion experiments.TG experiments at 5 K/min found that Bi_(2)O_(3),MoO_(3),TiO_(2),Fe_(2)O_(3),and CuO can promote thermo-oxidation of boron.Compared to pure boron,Tonsetcan be reduced from 569℃to a minimum of 449℃(B/Bi_(2)O_(3)).Infrared temperature measurement in T-jump tests showed that when heated by an electric heating wire at rates from 1000 K/s to 25000 K/s,the ignition temperatures of B/Bi_(2)O_(3) are the lowest,even lower than the melting point of boron oxide.Ignition images and SEM for the products further showed that the high heating rate is beneficial to the rapid reaction of boron powder in the single-particle combustion state.Fuels(B/Bi_(2)O_(3),B/MoO_(3),and B/CuO)were mixed with the oxidant AP and ignited by laser to study the combustion performance.The results showed that B/CuO/AP has the largest flame area,the highest BO_(2) characteristic spectral intensity,and the largest burn rate for powder lines.To combine the advantages of CuO and Bi_(2)O_(3),binary metal oxide(CBO,mass ratio of 3:1)was prepared and the test results showed that CBO can very well improve both ignition and combustion properties of boron.Especially B/CBO/AP has the highest burn rate compared with all fuels containing other additives.It was found that multi-component metal-oxide additive can more synergistically improve the reaction characteristics of boron powder than unary additive.These findings contribute to the development of boron-rich fuels and their application in propellants.展开更多
A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF c...A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF combustion model and a discrete ordinate transfer radiation model were used. The hybrid grid combining a structured and a non-structured grid was generated without any simplification of the complicated geometric configuration around the burner. It was found that the multistage combustion could reduce and control the peak value of temperature. At the same time, it was concluded that the amount of primary air had little effect on the global distribution of velocity and temperature in the furnace, but a great effect on that around the burner. It is recommended that 45% - 65% of the total amount of air be taken in in primary air inlets in the furnace. All the results are important to optimize the combustion progress.展开更多
In order to optimize the design of the submerged combustion vaporizer(SCV), an experimental apparatus was set up to investigate the heat transfer character outside the tube bundle in SCV. Several experiments were cond...In order to optimize the design of the submerged combustion vaporizer(SCV), an experimental apparatus was set up to investigate the heat transfer character outside the tube bundle in SCV. Several experiments were conducted using water and CO_2 as the heat transfer media in the tubes, respectively. The results indicated that hot air flux, the initial liquid level height and the tube pitch ratio had great influence on the heat transfer coefficient outside the tube bundle(ho). Finally, the air flux associated factor β and height associated factor γ were introduced to propose a new hocorrelation. After verified by experiments using cold water, high pressure CO_2 and liquid N_2 as heat transfer media, respectively, it was found that the biggest deviation between the predicted and the experimental values was less than 25%.展开更多
It’s necessary to forecast the shortest spontaneous combustion period for preventing and controlling the coal spontaneous combustion.During the experimental process,a calculating model of the SSCP is established on t...It’s necessary to forecast the shortest spontaneous combustion period for preventing and controlling the coal spontaneous combustion.During the experimental process,a calculating model of the SSCP is established on the basis of the oxidative heat release intensity and thermal capacity at different temperatures.According to the basic parameters of spontaneous combustion,heat of water evaporation and gas desorption,the SSCPs of different coals are further predicted.Finally,this study analyzed the relationships of the SSCP and the judging indexes of the self-ignite tendency.The result shows that the SSCP non-linearly increases with the decrease of dynamic oxygen adsorption and increase of activation energy.Compared with the practical fire situation of mine,this reliable method can meet the actual requirement of mine production.展开更多
A nitrate-citrate combustion route to synthesize La0.9Sr0.1Ga0.8Mg0.2O3-σ powder for solid oxide fuel cell application was presented. This route is based on the gelling of nitrate solutions by the addition of citric ...A nitrate-citrate combustion route to synthesize La0.9Sr0.1Ga0.8Mg0.2O3-σ powder for solid oxide fuel cell application was presented. This route is based on the gelling of nitrate solutions by the addition of citric acid and ammonium hydroxide, followed by an intense combustion process due to an exothermic redox reaction between nitrate and citrate ions. The optimum technical parameters are that the pH value is 5, and the molar ratio of citric acid to the total metallic ion is 1.5:1. X-ray diffraction characterization of calcined gel shows that pure phase was synthesized after calcination at 1400℃for 10 h, and the TEM result shovvs the calcined powder with average particle size is about 150 nm. The grain resistance contributes to the total resistance of sintered peliet below 500℃. The conductivity of the sintered peliet at 800℃ was 0.07 S-1·cm-1 higher than the conductivity of YSZ (0.05 S-1·cm-1 at 800℃)展开更多
Onsite mine fire generates large volumes of heat-affected coal in Jharia coalfields,India.Direct utilization of such heat-affected coal in thermal utilities is not feasible as such coal does not have the desirable vol...Onsite mine fire generates large volumes of heat-affected coal in Jharia coalfields,India.Direct utilization of such heat-affected coal in thermal utilities is not feasible as such coal does not have the desirable volatile matter required for combustion.In the present work,experimental studies have been carried out to investigate the possible utilization of such heat-affected coal in thermal utilities by blending with other coal.Heat-affected coal(31%ash and 5300 kcal/kg GCV)collected from Jharia coalfield were blended with thermal coal(28%ash and 5650 kcal/kg GCV)in different ratios of 90:10,80:20,70:30 and 60:40 to identify the desirable blend ratio for burning of blended coal in thermal utilities.Burning characteristics of all the coals were carried out using TGA.Various combustion parameters such as ignition temperature,peak temperature,burnout temperature,ignition index,burnout index,combustion performance index,rate and heat intensity index of the combustion process and activation energy were evaluated to analyse the combustion process.Experimental and theoretical analysis shows the blend ratio of 90:10 can be used in place of only thermal coal in utilities to reduce the fuel cost.展开更多
On the basis of the known experimental heats of combustions of the seventeen alkanes in condensed state, the general equation has been deduced, in which i and f are correlation coefficients, N and g are a numbers of v...On the basis of the known experimental heats of combustions of the seventeen alkanes in condensed state, the general equation has been deduced, in which i and f are correlation coefficients, N and g are a numbers of valence electrons and lone electron pairs of heteroatoms in molecule. The presented dependence has been used for the calculation of the heats of combustion of thirteen organic molecules with biochemical properties: holestan, cholesterol, methyl-cholesterol, ergosterol, vitamin-D2, estradiol, androstenone, testosterone, androstanedione, morphine, morphinanone, codeine and pentasozine. It is noted that good convergence was obtained within the limits of errors of thermochemical experiments known in the literature and calculations of the heats of combustion for some of them were conducted. With the application of Hess law and the heats of vaporization , which has been calculated with the use of a topological solvation index of the first order , the heats of formation for condensed and gaseous phases were calculated for the listed bioorganic molecules.展开更多
The fume bake-out aluminum reduction cell is a novel technology possessing such advantages as easy control for the speed of heating-up, well-distributed temperature, and little cathode and anode oxidation. The key equ...The fume bake-out aluminum reduction cell is a novel technology possessing such advantages as easy control for the speed of heating-up, well-distributed temperature, and little cathode and anode oxidation. The key equipment of fume bake-out is a combustion train whose one important part is a dispensing house. This work deals with the numerical model and the flow and temperature fields of the dispensing house, which suggests that uniformity of flow and energy distribution is influenced by the position, shape and direction of the nozzle and cross dimension of dispensing house mainly, but is less influenced by entry speed. The parameters of the dispensing house structure are optimised to satisfy the requirements for a combustion train in fume bake-out, and appropriate dimensions are obtained for a dispensing house structure.展开更多
The heats of combustion of 4th glycoside in the condensed state with the use of the equation ΔcombH=15.7-117.2(N-g) , in which N is a number bond-forming (valence) electrons less the number (g) of lone electron pairs...The heats of combustion of 4th glycoside in the condensed state with the use of the equation ΔcombH=15.7-117.2(N-g) , in which N is a number bond-forming (valence) electrons less the number (g) of lone electron pairs of nitrogen (g = 1) and oxygen (g = 2), have been determined. Such dependence is deduced previously joint for the description of the combustion enthalpies of 17 simple ethers of a cyclic structure and different sugars. The heats of formation ( ΔfHo ) of the mentioned above glycosides were calculated according to the Hess law via two ways: 1) through the use their heats of hydrolysis ( ΔhydrH ), which have been investigated earlier experimentally, 2) with the use the calculated the heats of combustion. The last procedure has been used also for the calculation of the heats of formation of the adenosine tri(ATP)-, di(ADP)- and mono(AMP)phosphates because of such thermochemical parameter is often hard achieved experimentally. The heats of hydrolysis ( ΔfH°hydr ) of ATP into ADP and ADP into AMP were calculated on the basis of their heats of formation in water ( ΔfH°aq ). The free energies of the same process ( ΔhydrG ) were known in literature. Last circumstance give us a possibility to calculate the hydrolysis entropies ( ΔhydrS ) using the Gibbs equation. The entropy values are a large negative, that pointed on the preliminary complex formation between adenosine phosphates and water before the breaking of P-O bonds or P-O-C fragments in its.展开更多
This experiment aims to summarize the regular pattern of low-carbon catalytic combustion furnace of natural gas used in glazed tile heating. The tiles used for decorating which are heated by catalytic combustion furna...This experiment aims to summarize the regular pattern of low-carbon catalytic combustion furnace of natural gas used in glazed tile heating. The tiles used for decorating which are heated by catalytic combustion furnace are more fine and glossy than the conventional ones, moreover, pollutant emission produced in productive process is much less than before. This conclusion may provide a new way to glazed tile heating industry, and at the same time, provide a general method of using the catalytic combustion furnace.展开更多
The laws of heat radiation from black body, the laws of Stefan-Boltzmann, Planck, and Wien are fundamental laws of physics. All in all, a little more than 30 fundamental laws of physics, studied by pupils and students...The laws of heat radiation from black body, the laws of Stefan-Boltzmann, Planck, and Wien are fundamental laws of physics. All in all, a little more than 30 fundamental laws of physics, studied by pupils and students worldwide were disclosed. Scientific disclosure of fundamental laws influences mainly power technology, fuel and energy resources saving. In the late XIX century the laws of heat radiation from gas volumes and the laws of Makarov were disclosed. Since the radiation laws from blackbody are fundamental laws of physics, then the laws of heat radiation from gas volumes are fundamental laws of physics. Effect of using laws of heat radiation from gas volumes on fuel saving, reduction of development pressure on the environment in many countries of the world is shown. Calculation results from heat transfer in combustion chamber of gas-turbine plant are described. The torch in a combustion chamber is modeled by cylindrical gas volumes. Fluxes data from the torch and convective fluxes of cooling air are confirmed by measuring data from chamber-wall temperature.展开更多
The aerodynamics and heat transfer performance in the rear-mounted automobile cabin have an important influence on the engine’s safety and the operational stability of the automobile.The article uses STARCCM and GT-C...The aerodynamics and heat transfer performance in the rear-mounted automobile cabin have an important influence on the engine’s safety and the operational stability of the automobile.The article uses STARCCM and GT-COOL software to establish the 3D wind tunnel model and engine cooling system model of the internal combustion engine.At the same time,we established a 3D artificial coupling model through parameter transfer.The research results show that the heat transfer coefficient decreases with the increase of the comprehensive drag coefficient of the nacelle.This shows that the cabin flow field has an important influence on the heat transfer coefficient.Themainstream temperature rise of the engine room increases with the increase of the engine load.It is proved that vehicle speed affects the amount of heat dissipation of the engine room internal combustion engine under certain load conditions.The article provides a more effective and fast calculation method for the research on the heat dissipation of the internal combustion engine and the optimization of the cooling system equipment.展开更多
This experiment aims to summarize the properties of glazed tiles that heated by the low-carbon catalytic combustion furnace of natural gas. The tiles heated by the catalytic combustion furnace are more fine and glossy...This experiment aims to summarize the properties of glazed tiles that heated by the low-carbon catalytic combustion furnace of natural gas. The tiles heated by the catalytic combustion furnace are more fine and glossy than the conventional ones. This conclusion provides a new way to glazed tile heating industry. Only with a better understanding of catalytic combustion, can the application benefit our environment and industry.展开更多
The molar heat capacities(C_p) of guaiacol(CAS 90-50-1) and acetyl guaiacol ester(AGE, CAS 613-70-7) were determinated from 290 K to 350 K by differential scanning calorimetry(DSC), and expressed as a function of temp...The molar heat capacities(C_p) of guaiacol(CAS 90-50-1) and acetyl guaiacol ester(AGE, CAS 613-70-7) were determinated from 290 K to 350 K by differential scanning calorimetry(DSC), and expressed as a function of temperature. Two kinds of group contribution models were used to estimate the molar heat capacities of both guaiacol and AGE, the average relative deviation is less than 10%. The standard molar enthalpies of combustion of guaiacol and AGE were- 3590.0 k J·mol^(-1)and- 4522.1 k J·mol^(-1) by a precise thermal isolation Oxygen Bomb Calorimeter. The standard molar enthalpies of formation of guaiacol and AGE in a liquid state at298.15 K were calculated to be- 307.95 k J·mol^(-1) and- 448.72 k J·mol^(-1), respectively, based on the standard molar enthalpies of combustion. The thermodynamic properties are useful for exploiting the new synthesis method, engineering design and industry production of AGE using guaiacol as a raw material.展开更多
In order to meet the requirements of combustion optimization for saving energy and reducing pollutant emission simultaneously,an immune cell subsets based multiobjective optimization algorithm(ICSMOA)is proposed.In ...In order to meet the requirements of combustion optimization for saving energy and reducing pollutant emission simultaneously,an immune cell subsets based multiobjective optimization algorithm(ICSMOA)is proposed.In the ICSMOA,the subset division operator and the immunological tolerance operation are defined.Preference can be easily addressed by using the subset division operator,and the distribution of the solutions can be guaranteed by the immunological tolerance operation.Using the ICSMOA,a group of Pareto optimal solutions can be obtained.However,by the traditional weighting method(WM),only one solution can be obtained and it cannot be judged as Pareto optimal or not.In contrast to the solutions obtained by the repeatedly performed WM,the simulation results show that most solutions obtained by the ICSMOA are better than the solutions obtained by the WM.In addition,the Pareto front obtained by the ICSMOA is not as uniform as most classical multiobjective optimization algorithms.More optimal solutions which meet the preference set by the decision-maker can be obtained and they are very useful for industrial application.展开更多
文摘Spectral quantitative fingerprinting including ultraviolet (UV) and Fourier transform infrared (FT-IR) coupled with combustion heat (CH) analytical techniques was employed and compared for rapid screening quality grade and discriminating San-Huang Tablets (SHT) of different commercial brands. The systematic quantified fingerprint method (SQFM) was applied to evaluate, qualitatively and quantitatively, the quality consistency of the herbal preparation. It was possible to deduce that the quantitative similarity analysis by SQFM was enabled to make a good discrimination of the tested samples. It was a particularly useful method for the overall quality evaluation of herbal medicine and their preparations.
基金the support of the National Natural Science Foundation of China grant number 51776175。
文摘The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(Grant No.21507122)
文摘Objective To explore the relationship between different components of fine particulate matter(PM2.5) emitted from coal combustion and their cytotoxic effect in the vascular endothelial cells. Methods Coal-fired PM2.5 was sampled using a fixed-source dilution channel and flow sampler. The sample components were analyzed by ion chromatography and inductively coupled plasma atomic emission spectroscopy(ICP-AES). The PM2.5 suspension was extracted using an ultrasonic water-bath method and then human umbilical vein endothelial cells(EA.hy926) were treated with various concentrations of the PM2.5 suspension. Cell proliferation, oxidative DNA damage, and global DNA methylation levels were used to measure the cellular toxicity of PM2.5 emitted from coal combustion. Results Compared to other types of coal-fired PM2.5 preparations, the PM2.5 suspension from Yinchuan coal had the highest cytotoxicity. PM2.5 suspension from Datong coal had the highest toxic effect while that from Yinchuan coal had the lowest. Exposure to coal-fired PM2.5 from Jingxi coal resulted in lower 8-hydroxy-2’-deoxyguanosine(8-OHd G) levels. At the same dose, PM2.5 emitted from coal combustion could produce more severe DNA impairment compared to that produced by carbon black. Cell survival rate was negatively correlated with chloride and potassium ions content. The 5-methylcytosine(5-m C) level was positively correlated with Mn and negatively correlated with Zn levels. The 8-OHd G% level was positively correlated with both Mn and Fe. Conclusion PM2.5 emitted from coal combustion can decrease cell viability, increase global DNA methylation, and cause oxidative DNA damage in EA.hy926 cells. Metal components may be important factors that influence cellular toxicity.
基金supported by the New Energy Vehicle Power Battery Life Cycle Testing and Verification Public Service Platform Project[2022-235-224]the Beijing Science and Technology Planning Project[Z221100005222004]+1 种基金the Key Technologies Research and Development Program[2021YFB2012504]the Beijing Goldenbridge Project[ZZ2023002]。
文摘In this study,a detailed analysis of the combustion behaviors of the lithium iron phosphate(LFP)and lithium manganese oxide(LMO)batteries used in electric bicycles was conducted.This research included quantitative measurements of the combustion duration,flame height,combustion temperature,heat release rate,and total heat release.The results indicated that LMO batteries exhibited higher combustion temperatures of 600–700°C,flame heights of 70–75 cm,a significantly higher heat release rate of40.1 k W(12 Ah),and a total heat release of 1.04 MJ(12 Ah)compared to LFP batteries with the same capacity.Based on these experimental results,a normalized total heat release(NORTHR)parameter was proposed,demonstrating good universality for batteries with different capacities.Utilizing this parameter,quantitative calculations and optimization of the extinguishing agent dosage were conducted for fires involving these two types of batteries,and the method was validated by extinguishing fires for these two types of battery packs with water-based extinguishing fluids.
基金State Key Laboratory of Explosion Science and Safety Protection of China (Grant No.QNKT21-8)National Natural Science Foundation of China (Grant No.12302432)to provide financial support。
文摘Boron has been considered a promising powdered metal fuel for enhancing composite propellants'energy output due to its high energy density.However,the high ignition temperature and low combustion efficiency limit the application of boron powder due to the high boiling point of the boron oxide layer.Much research is ongoing to overcome these shortcomings,and one potential approach is to introduce a small quantity of metal oxide additives to promote the reaction of boron.This study prepared boron-rich fuels with 10 wt%of eight nano-metal oxide additives by mechanical ball milling.The effect of metal oxides on the thermo-oxidation,ignition,and combustion properties of boron powder was comprehensively studied by the thermogravimetric analysis(TG),the electrically heated filament setup(T-jump),and the laser-induced combustion experiments.TG experiments at 5 K/min found that Bi_(2)O_(3),MoO_(3),TiO_(2),Fe_(2)O_(3),and CuO can promote thermo-oxidation of boron.Compared to pure boron,Tonsetcan be reduced from 569℃to a minimum of 449℃(B/Bi_(2)O_(3)).Infrared temperature measurement in T-jump tests showed that when heated by an electric heating wire at rates from 1000 K/s to 25000 K/s,the ignition temperatures of B/Bi_(2)O_(3) are the lowest,even lower than the melting point of boron oxide.Ignition images and SEM for the products further showed that the high heating rate is beneficial to the rapid reaction of boron powder in the single-particle combustion state.Fuels(B/Bi_(2)O_(3),B/MoO_(3),and B/CuO)were mixed with the oxidant AP and ignited by laser to study the combustion performance.The results showed that B/CuO/AP has the largest flame area,the highest BO_(2) characteristic spectral intensity,and the largest burn rate for powder lines.To combine the advantages of CuO and Bi_(2)O_(3),binary metal oxide(CBO,mass ratio of 3:1)was prepared and the test results showed that CBO can very well improve both ignition and combustion properties of boron.Especially B/CBO/AP has the highest burn rate compared with all fuels containing other additives.It was found that multi-component metal-oxide additive can more synergistically improve the reaction characteristics of boron powder than unary additive.These findings contribute to the development of boron-rich fuels and their application in propellants.
文摘A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF combustion model and a discrete ordinate transfer radiation model were used. The hybrid grid combining a structured and a non-structured grid was generated without any simplification of the complicated geometric configuration around the burner. It was found that the multistage combustion could reduce and control the peak value of temperature. At the same time, it was concluded that the amount of primary air had little effect on the global distribution of velocity and temperature in the furnace, but a great effect on that around the burner. It is recommended that 45% - 65% of the total amount of air be taken in in primary air inlets in the furnace. All the results are important to optimize the combustion progress.
文摘In order to optimize the design of the submerged combustion vaporizer(SCV), an experimental apparatus was set up to investigate the heat transfer character outside the tube bundle in SCV. Several experiments were conducted using water and CO_2 as the heat transfer media in the tubes, respectively. The results indicated that hot air flux, the initial liquid level height and the tube pitch ratio had great influence on the heat transfer coefficient outside the tube bundle(ho). Finally, the air flux associated factor β and height associated factor γ were introduced to propose a new hocorrelation. After verified by experiments using cold water, high pressure CO_2 and liquid N_2 as heat transfer media, respectively, it was found that the biggest deviation between the predicted and the experimental values was less than 25%.
基金supported by China National Science Foundation of China (Nos.51074158 and 51304189)the Youth Science and Research Fund of China University of Mining and Technology of China (No.2009A006)
文摘It’s necessary to forecast the shortest spontaneous combustion period for preventing and controlling the coal spontaneous combustion.During the experimental process,a calculating model of the SSCP is established on the basis of the oxidative heat release intensity and thermal capacity at different temperatures.According to the basic parameters of spontaneous combustion,heat of water evaporation and gas desorption,the SSCPs of different coals are further predicted.Finally,this study analyzed the relationships of the SSCP and the judging indexes of the self-ignite tendency.The result shows that the SSCP non-linearly increases with the decrease of dynamic oxygen adsorption and increase of activation energy.Compared with the practical fire situation of mine,this reliable method can meet the actual requirement of mine production.
基金The authors acknowledge financial support from 863 National Project(No.2003AA302440).
文摘A nitrate-citrate combustion route to synthesize La0.9Sr0.1Ga0.8Mg0.2O3-σ powder for solid oxide fuel cell application was presented. This route is based on the gelling of nitrate solutions by the addition of citric acid and ammonium hydroxide, followed by an intense combustion process due to an exothermic redox reaction between nitrate and citrate ions. The optimum technical parameters are that the pH value is 5, and the molar ratio of citric acid to the total metallic ion is 1.5:1. X-ray diffraction characterization of calcined gel shows that pure phase was synthesized after calcination at 1400℃for 10 h, and the TEM result shovvs the calcined powder with average particle size is about 150 nm. The grain resistance contributes to the total resistance of sintered peliet below 500℃. The conductivity of the sintered peliet at 800℃ was 0.07 S-1·cm-1 higher than the conductivity of YSZ (0.05 S-1·cm-1 at 800℃)
文摘Onsite mine fire generates large volumes of heat-affected coal in Jharia coalfields,India.Direct utilization of such heat-affected coal in thermal utilities is not feasible as such coal does not have the desirable volatile matter required for combustion.In the present work,experimental studies have been carried out to investigate the possible utilization of such heat-affected coal in thermal utilities by blending with other coal.Heat-affected coal(31%ash and 5300 kcal/kg GCV)collected from Jharia coalfield were blended with thermal coal(28%ash and 5650 kcal/kg GCV)in different ratios of 90:10,80:20,70:30 and 60:40 to identify the desirable blend ratio for burning of blended coal in thermal utilities.Burning characteristics of all the coals were carried out using TGA.Various combustion parameters such as ignition temperature,peak temperature,burnout temperature,ignition index,burnout index,combustion performance index,rate and heat intensity index of the combustion process and activation energy were evaluated to analyse the combustion process.Experimental and theoretical analysis shows the blend ratio of 90:10 can be used in place of only thermal coal in utilities to reduce the fuel cost.
文摘On the basis of the known experimental heats of combustions of the seventeen alkanes in condensed state, the general equation has been deduced, in which i and f are correlation coefficients, N and g are a numbers of valence electrons and lone electron pairs of heteroatoms in molecule. The presented dependence has been used for the calculation of the heats of combustion of thirteen organic molecules with biochemical properties: holestan, cholesterol, methyl-cholesterol, ergosterol, vitamin-D2, estradiol, androstenone, testosterone, androstanedione, morphine, morphinanone, codeine and pentasozine. It is noted that good convergence was obtained within the limits of errors of thermochemical experiments known in the literature and calculations of the heats of combustion for some of them were conducted. With the application of Hess law and the heats of vaporization , which has been calculated with the use of a topological solvation index of the first order , the heats of formation for condensed and gaseous phases were calculated for the listed bioorganic molecules.
文摘The fume bake-out aluminum reduction cell is a novel technology possessing such advantages as easy control for the speed of heating-up, well-distributed temperature, and little cathode and anode oxidation. The key equipment of fume bake-out is a combustion train whose one important part is a dispensing house. This work deals with the numerical model and the flow and temperature fields of the dispensing house, which suggests that uniformity of flow and energy distribution is influenced by the position, shape and direction of the nozzle and cross dimension of dispensing house mainly, but is less influenced by entry speed. The parameters of the dispensing house structure are optimised to satisfy the requirements for a combustion train in fume bake-out, and appropriate dimensions are obtained for a dispensing house structure.
文摘The heats of combustion of 4th glycoside in the condensed state with the use of the equation ΔcombH=15.7-117.2(N-g) , in which N is a number bond-forming (valence) electrons less the number (g) of lone electron pairs of nitrogen (g = 1) and oxygen (g = 2), have been determined. Such dependence is deduced previously joint for the description of the combustion enthalpies of 17 simple ethers of a cyclic structure and different sugars. The heats of formation ( ΔfHo ) of the mentioned above glycosides were calculated according to the Hess law via two ways: 1) through the use their heats of hydrolysis ( ΔhydrH ), which have been investigated earlier experimentally, 2) with the use the calculated the heats of combustion. The last procedure has been used also for the calculation of the heats of formation of the adenosine tri(ATP)-, di(ADP)- and mono(AMP)phosphates because of such thermochemical parameter is often hard achieved experimentally. The heats of hydrolysis ( ΔfH°hydr ) of ATP into ADP and ADP into AMP were calculated on the basis of their heats of formation in water ( ΔfH°aq ). The free energies of the same process ( ΔhydrG ) were known in literature. Last circumstance give us a possibility to calculate the hydrolysis entropies ( ΔhydrS ) using the Gibbs equation. The entropy values are a large negative, that pointed on the preliminary complex formation between adenosine phosphates and water before the breaking of P-O bonds or P-O-C fragments in its.
文摘This experiment aims to summarize the regular pattern of low-carbon catalytic combustion furnace of natural gas used in glazed tile heating. The tiles used for decorating which are heated by catalytic combustion furnace are more fine and glossy than the conventional ones, moreover, pollutant emission produced in productive process is much less than before. This conclusion may provide a new way to glazed tile heating industry, and at the same time, provide a general method of using the catalytic combustion furnace.
文摘The laws of heat radiation from black body, the laws of Stefan-Boltzmann, Planck, and Wien are fundamental laws of physics. All in all, a little more than 30 fundamental laws of physics, studied by pupils and students worldwide were disclosed. Scientific disclosure of fundamental laws influences mainly power technology, fuel and energy resources saving. In the late XIX century the laws of heat radiation from gas volumes and the laws of Makarov were disclosed. Since the radiation laws from blackbody are fundamental laws of physics, then the laws of heat radiation from gas volumes are fundamental laws of physics. Effect of using laws of heat radiation from gas volumes on fuel saving, reduction of development pressure on the environment in many countries of the world is shown. Calculation results from heat transfer in combustion chamber of gas-turbine plant are described. The torch in a combustion chamber is modeled by cylindrical gas volumes. Fluxes data from the torch and convective fluxes of cooling air are confirmed by measuring data from chamber-wall temperature.
基金The study was partly supported by the Grant SC2021ZX05A0013 of the Heilongjiang Province“hundred,thousand,thousand”Engineering Science and Technology Major Special Project.
文摘The aerodynamics and heat transfer performance in the rear-mounted automobile cabin have an important influence on the engine’s safety and the operational stability of the automobile.The article uses STARCCM and GT-COOL software to establish the 3D wind tunnel model and engine cooling system model of the internal combustion engine.At the same time,we established a 3D artificial coupling model through parameter transfer.The research results show that the heat transfer coefficient decreases with the increase of the comprehensive drag coefficient of the nacelle.This shows that the cabin flow field has an important influence on the heat transfer coefficient.Themainstream temperature rise of the engine room increases with the increase of the engine load.It is proved that vehicle speed affects the amount of heat dissipation of the engine room internal combustion engine under certain load conditions.The article provides a more effective and fast calculation method for the research on the heat dissipation of the internal combustion engine and the optimization of the cooling system equipment.
文摘This experiment aims to summarize the properties of glazed tiles that heated by the low-carbon catalytic combustion furnace of natural gas. The tiles heated by the catalytic combustion furnace are more fine and glossy than the conventional ones. This conclusion provides a new way to glazed tile heating industry. Only with a better understanding of catalytic combustion, can the application benefit our environment and industry.
文摘The molar heat capacities(C_p) of guaiacol(CAS 90-50-1) and acetyl guaiacol ester(AGE, CAS 613-70-7) were determinated from 290 K to 350 K by differential scanning calorimetry(DSC), and expressed as a function of temperature. Two kinds of group contribution models were used to estimate the molar heat capacities of both guaiacol and AGE, the average relative deviation is less than 10%. The standard molar enthalpies of combustion of guaiacol and AGE were- 3590.0 k J·mol^(-1)and- 4522.1 k J·mol^(-1) by a precise thermal isolation Oxygen Bomb Calorimeter. The standard molar enthalpies of formation of guaiacol and AGE in a liquid state at298.15 K were calculated to be- 307.95 k J·mol^(-1) and- 448.72 k J·mol^(-1), respectively, based on the standard molar enthalpies of combustion. The thermodynamic properties are useful for exploiting the new synthesis method, engineering design and industry production of AGE using guaiacol as a raw material.
基金The National Natural Science Foundation of China(No.51036002,51076027)the Key Project of Ministry of Education of China(No.108060)
文摘In order to meet the requirements of combustion optimization for saving energy and reducing pollutant emission simultaneously,an immune cell subsets based multiobjective optimization algorithm(ICSMOA)is proposed.In the ICSMOA,the subset division operator and the immunological tolerance operation are defined.Preference can be easily addressed by using the subset division operator,and the distribution of the solutions can be guaranteed by the immunological tolerance operation.Using the ICSMOA,a group of Pareto optimal solutions can be obtained.However,by the traditional weighting method(WM),only one solution can be obtained and it cannot be judged as Pareto optimal or not.In contrast to the solutions obtained by the repeatedly performed WM,the simulation results show that most solutions obtained by the ICSMOA are better than the solutions obtained by the WM.In addition,the Pareto front obtained by the ICSMOA is not as uniform as most classical multiobjective optimization algorithms.More optimal solutions which meet the preference set by the decision-maker can be obtained and they are very useful for industrial application.