期刊文献+
共找到1,244篇文章
< 1 2 63 >
每页显示 20 50 100
Large eddy simulation of turbulent premixed and stratified combustion using flame surface density model coupled with tabulation method 被引量:1
1
作者 Zhou YU Hongda ZHANG +1 位作者 Taohong YE Minming ZHU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第12期1719-1736,共18页
Large eddy simulations(LESs) are performed to investigate the Cambridge premixed and stratified flames, SwB1 and SwB5, respectively. The flame surface density(FSD) model incorporated with two different wrinkling facto... Large eddy simulations(LESs) are performed to investigate the Cambridge premixed and stratified flames, SwB1 and SwB5, respectively. The flame surface density(FSD) model incorporated with two different wrinkling factor models, i.e., the Muppala and Charlette2 wrinkling factor models, is used to describe combustion/turbulence interaction, and the flamelet generated manifolds(FGM) method is employed to determine major scalars. This coupled sub-grid scale(SGS) combustion model is named as the FSD-FGM model. The FGM method can provide the detailed species in the flame which cannot be obtained from the origin FSD model. The LES results show that the FSD-FGM model has the ability of describing flame propagation, especially for stratified flames. The Charlette2 wrinkling factor model performs better than the Muppala wrinkling factor model in predicting the flame surface area change by the turbulence.The combustion characteristics are analyzed in detail by the flame index and probability distributions of the equivalence ratio and the orientation angle, which confirms that for the investigated stratified flame, the dominant combustion modes in the upstream and downstream regions are the premixed mode and the back-supported mode, respectively. 展开更多
关键词 large eddy simulation(LES) flame surface density(FSD) model TABULATION premixed combustion stratified combustion
下载PDF
CFD study of non-premixed swirling burners: Effect of turbulence models 被引量:1
2
作者 Erfan Khodabandeh Hesam Moghadasi +4 位作者 Mohsen Saffari Pour Mikael Ersson Par G.Jonsson Marc A.Rosen Alireza Rahbari 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第4期1029-1038,共10页
This research investigates a numerical simulation of swirling turbulent non-premixed combustion.The effects on the combustion characteristics are examined with three turbulence models:namely as the Reynolds stress mod... This research investigates a numerical simulation of swirling turbulent non-premixed combustion.The effects on the combustion characteristics are examined with three turbulence models:namely as the Reynolds stress model,spectral turbulence analysis and Re-Normalization Group.In addition,the P-1 and discrete ordinate(DO)models are used to simulate the radiative heat transfer in this model.The governing equations associated with the required boundary conditions are solved using the numerical model.The accuracy of this model is validated with the published experimental data and the comparison elucidates that there is a reasonable agreement between the obtained values from this model and the corresponding experimental quantities.Among different models proposed in this research,the Reynolds stress model with the Probability Density Function(PDF)approach is more accurate(nearly up to 50%)than other turbulent models for a swirling flow field.Regarding the effect of radiative heat transfer model,it is observed that the discrete ordinate model is more precise than the P-1 model in anticipating the experimental behavior.This model is able to simulate the subcritical nature of the isothermal flow as well as the size and shape of the internal recirculation induced by the swirl due to combustion. 展开更多
关键词 Computational Fluid Dynamics(CFD) Turbulent combustion Non-premixed flames Large eddy simulations Radiative heat transfer model Modeling validation
下载PDF
Experimental Investigation of Flame Structure and Combustion Limit During Premixed Methane/Air Jet Flame and Sidewall Interaction
3
作者 Ying Chen Jianfeng Pan +2 位作者 Qingbo Lu Yu Wang Chenxin Zhang 《Energy Engineering》 EI 2021年第1期37-52,共16页
The effects of inlet gas parameters and sloping sidewall angle on the flame structure and combustion limit with and without sidewall were experimentally investigated.Flame height and impact angle were obtained by che... The effects of inlet gas parameters and sloping sidewall angle on the flame structure and combustion limit with and without sidewall were experimentally investigated.Flame height and impact angle were obtained by chemiluminescence intensity analysis of CH*distribution.First,the combustion characteristics of flame with and without sidewall at different equivalence ratios were explored;then,the influence of Reynolds number and inlet gas temperature on flame structure and combustion limit of v-shaped flame with sidewall were analyzed,and the results with sidewall were compared with those without sidewall.Finally,the variation trend of flame parameters with different sloping sidewall angles was analyzed.The experimental results show that the existence of sidewall makes flame shape change from“M-shaped”to“inverted N-shaped”,and conical shape to trapezoidal shape.The inhibition effect of sidewall on flame stretching downstream is strengthened with the increase in Reynolds number;but as the temperature of the inlet gas increases,the inhibitory effect is obviously weakened.When sloping sidewall angle decreases from 90°to 55°at 5°intervals,flame height and impact angle of v-shaped flame reach the extreme value whenβ=80°.Compared with the case without sidewall,the range of v-shaped flame with sidewall has no obvious trend of broadening or shrinking when inlet gas temperature is increased;however,as sloping sidewall angle decreases,the range of the v-shaped flame shrinks obviously and flammability limit increases significantly. 展开更多
关键词 SIDEWALL premixed flame flame-wall interaction flame structure combustion limit
下载PDF
Numerical Simulation of Flameless Premixed Combustion with an Annular Nozzle in a Recuperative Furnace 被引量:32
4
作者 米建春 李鹏飞 郑楚光 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第1期10-17,共8页
This paper reports an investigation of Computational Fluid Dynamics(CFD)on the influence of injection momentum rate of premixed air and fuel on the flameless Moderate or Intense Low oxygen Dilution(MILD) combustion in... This paper reports an investigation of Computational Fluid Dynamics(CFD)on the influence of injection momentum rate of premixed air and fuel on the flameless Moderate or Intense Low oxygen Dilution(MILD) combustion in a recuperative furnace.Details of the furnace flow velocity,temperature,O2,CO2 and NOx concentrations are provided.Results obtained suggest that the flue gas recirculation plays a vital role in establishing the premixed MILD combustion.It is also revealed that there is a critical momentum rate of the fuel-air mixture below which MILD combustion does not occur.Moreover,the momentum rate appears to have less significant influence on conventional global combustion than on MILD combustion. 展开更多
关键词 预混合燃烧 燃烧炉 数值模拟 无火焰 计算流体动力学 回热 管带 环形
下载PDF
Mitigation of Combustion Instability and NO_(x)Emissions by Microjets in Lean Premixed Flames with Different Swirl Numbers 被引量:1
5
作者 ZHOU Hao HU Liubin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第4期1697-1709,共13页
Swirl combustion serves as a helpful flame stabilization method,which also affects the combustion and emission characteristics.This article experimentally investigated the effects of CO_(2)microjets on combustion inst... Swirl combustion serves as a helpful flame stabilization method,which also affects the combustion and emission characteristics.This article experimentally investigated the effects of CO_(2)microjets on combustion instability and NO_(x)emissions in lean premixed flames with different swirl numbers.The microjets’control feasibility was examined from three variables of CO_(2)jet flow rate,thermal power,and swirl angles.Results indicate that microjets can mitigate the combustion instability and NO_(x)emissions in lean premixed burners with different swirl numbers and thermal power.Still,the damping effect of microjets in low swirl intensity is better than that in high swirl intensity.The damping ratio of pressure amplitude can reach the maximum of 98%,and NO_(x)emissions can realize the maximum reduction of 10.1×10^(−6)at the swirl angle of 30°.Besides,the flame macrostructure switches from an inverted cone shape to a petal shape,and the flame length reduction at low swirl intensity is higher than that of high swirl intensity.This research clarified the control differences of mitigation of combustion instability and NO_(x)emissions by microjets in lean premixed flames with different swirl numbers,contributing to the optimization of microjets control and the construction of high-performance burners. 展开更多
关键词 combustion instability swirl numbers thermal power CO_(2)microjets NO_(x)emissions lean premixed flame
原文传递
Numerical study on combustion of diluted methanol-air premixed mixtures 被引量:1
6
作者 Zheng JianJun Zhang ZhiYuan +3 位作者 Huang ZuoHua Hu ErJiang Tang ChengLong Wang JinHua 《Chinese Science Bulletin》 SCIE EI CAS 2010年第9期884-891,共8页
The effect of nitrogen dilution on the premixed combustion characteristics and flame structure of laminar premixed methanol-air-nitrogen mixtures are analyzed numerically based on an extended methanol oxidation mechan... The effect of nitrogen dilution on the premixed combustion characteristics and flame structure of laminar premixed methanol-air-nitrogen mixtures are analyzed numerically based on an extended methanol oxidation mechanism. The laminar burning velocities, the mass burning fluxes, the adiabatic flame temperature, the global activation temperature, the Zeldovich number, the effective Lewis number and the laminar flame structure of the methanol-air-nitrogen mixtures are obtained under different nitrogen dilution ratios. Comparison between experiments and numerical simulations show that the extended methanol oxidation mechanism can well reproduce the laminar burning velocities for lean and near stoichiometric methanol-air-nitrogen mixtures. The laminar burning velocities and the mass burning fluxes decrease with the increase of nitrogen dilution ratio and the effect is more obvious for the lean mixture. The effective Lewis number of the mixture increases with the increase of nitrogen dilution ratio, and the diffusive-thermal instability of the flame front is decreased by the nitrogen addition. Nitrogen addition can suppress the hydrodynamic instability of methanol-air-nitrogen flames. The decrease of the mole fraction of OH and H is mainly responsible for the suppressed effect of nitrogen diluent on the chemical reaction in the methanol-air-nitrogen laminar premixed flames, and the NOx and formaldehyde emissions are decreased by the nitrogen addition. 展开更多
关键词 METHANOL DILUTION premixed combustion numerical analysis
原文传递
Flow characterization and dilution effects of N_2 and CO_2 on premixed CH_4/air flames in a swirl-stabilized combustor 被引量:1
7
作者 韩乐 蔡国飙 +2 位作者 王海兴 Renou Bruno Boukhalfa Abdelkrim 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期382-395,共14页
Numerically-aided experimental studies are conducted on a swirl-stabilized combustor to investigate the dilution effects on flame stability, flame structure, and pollutant emissions of premixed CH4/air flames. Our goa... Numerically-aided experimental studies are conducted on a swirl-stabilized combustor to investigate the dilution effects on flame stability, flame structure, and pollutant emissions of premixed CH4/air flames. Our goal is to provide a systematic assessment on combustion characteristics in diluted regimes for its application to environmentally-friendly approaches such as biogas combustion and exhanst-gas recirculation technology. Two main diluting species, N2 and CO2, are tested at various dilution rates. The results obtained by means of optical diagnostics show that five main flame regimes can be observed for Nz-diluted flames by changing excess air and dilution rate. CO2-diluted flames follow the same pattern evolution except that all the domains are shifted to lower excess air. Both N2 and CO2 dilution affect the lean blow- out (LBO) limits negatively. This behavior can be counter-balanced by reactant preheating which is able to broaden the flammability domain of the diluted flames. Flame reactivity is degraded by increasing dilution rate. Meanwhile, flames are thickened in the presence of both diluting species. NOx emissions are significantly reduced with dilution and proved to be relevant to flame stability diagrams: slight augmentation in NOx emission profiles is related to transitional flame states where instability occurs. Although dilution results in increase in CO emissions at certain levels, optimal dilution rates can still be proposed to achieve an ideal compromise. 展开更多
关键词 dilution effect premixed combustion swirl flow optical diagnostics
下载PDF
RANS simulations on combustion and emission characteristics of a premixed NH_(3)/H_(2) swirling flame with reduced chemical kinetic model 被引量:1
8
作者 Yuze SUN Tao CAI +4 位作者 Mohammad SHAHSAVARI Dakun SUN Xiaofeng SUN Dan ZHAO Bing WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第12期17-27,共11页
Ammonia(NH_(3))is considered as a potential alternative carbon free fuel to reduce greenhouse gas emission to meet the increasingly stringent emission requirements.Co-burning NH_(3) and H_(2) is an effective way to ov... Ammonia(NH_(3))is considered as a potential alternative carbon free fuel to reduce greenhouse gas emission to meet the increasingly stringent emission requirements.Co-burning NH_(3) and H_(2) is an effective way to overcome ammonia’s relative low burning velocity.In this work,3D Reynolds Averaged Navier-Stokes(RANS)numerical simulations are conducted on a premixed NH_(3)/H_(2) swirling flame with reduced chemical kinetic mechanism.The effects of(A)overall equivalence ratio Φ and(B)hydrogen blended molar fraction XH2 on combustion and emission characteristics are examined.The present results show that when 100%NH_(3)-0%H_(2)-air are burnt,the NO emission and unburned NH3 of at the swirling combustor outlet has the opposite varying trends.With the increase of Φ,NO emission is found to be decreased,while the unburnt ammonia emission is increased.NH_(2)→HNO,NH→HNO and HNO→NO sub-paths are found to play a critical role in NO formation.Normalized reaction rate of all these three sub-paths is shown to be decreased with increased Φ.Hydrogen addition is shown to significantly increase the laminar burning velocity of the mixed fuel.However,adding H_(2) does not affect the critical equivalence ratio corresponding to the maximum burning velocity.The emission trend of NO and unburnt NH_(3) with increased Φ is unchanged by blending H_(2).NO emission with increased X_(H2) is increased slightly less at a larger Φ than that at a smaller Φ.In addition,reaction rates of NH_(2)→HNO and HNO→NO sub-paths are decreased with increased X_(H2),when Φ is larger.Under all tested cases,blending H_(2) with NH_(3) reduces the unburned NH_(3) emission,especially for rich combustion conditions.In summary,the present work provides research finding on supporting applying ammonia with hydrogen blended in low-emission gas turbine engines. 展开更多
关键词 AMMONIA EMISSION HYDROGEN premixed combustion Reduced mechanism Swirling flame
原文传递
Non-premixed turbulent combustion modeling based on the filtered turbulent flamelet equation
9
作者 Jian Zhang LiPo Wang YuQing Guo 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2020年第4期119-124,共6页
In turbulent combustion simulations, the flow structure at the unresolved scale level needs to be reasonably modeled. Following the idea of turbulent flamelet equation for the non-premixed flame case, which was derive... In turbulent combustion simulations, the flow structure at the unresolved scale level needs to be reasonably modeled. Following the idea of turbulent flamelet equation for the non-premixed flame case, which was derived based on the filtered governing equations(L. Wang, Combust. Flame 175, 259(2017)), the scalar dissipation term for tabulation can be directly computed from the resolved flowing quantities, instead of solving species transport equations. Therefore, the challenging source term closure for the scalar dissipation or any assumed probability density functions can be avoided;meanwhile the chemical sources are closed by scaling relations. The general principles are discussed in the context of large eddy simulation with case validation. The new model predictions of the bluff-body flame show sufficiently improved results, compared with these from the classic progress-variable approach. 展开更多
关键词 TURBULENT combustion modeling TURBULENT FLAMELET EQUATION large EDDY simulation NON-premixed flame
原文传递
Review on Large Eddy Simulation of Turbulent Premixed Combustion in Tubes
10
作者 LUO Gang DAI Haidong +4 位作者 DAI Lingpeng QIAN Yunlou SHA Ce ZHANG Yuxiang WU Bingxin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第4期853-867,共15页
This paper reviews the existing knowledge on the large eddy simulation(LES) of turbulent premixed combustion in empty tubes and obstructed tubes. From the view of model development in LES, this review comprehensively ... This paper reviews the existing knowledge on the large eddy simulation(LES) of turbulent premixed combustion in empty tubes and obstructed tubes. From the view of model development in LES, this review comprehensively analyzes the development history and applicability of the important Sub-Grid Scale(SGS) viscosity models and SGS combustion models. LES is also used to combine flow and combustion models to reproduce industrial explosion including deflagration and detonation and the transition from deflagration to detonation(DDT). The discussion about models and applications presented here leads readers to understand the progress of LES in the explosion of tube and reveals the deficiencies in this area. 展开更多
关键词 LES turbulent premixed combustion SGS models empty tube obstructed tube
原文传递
The Effect of Swirl Intensity on the Flow Behavior and Combustion Characteristics of a Lean Propane-Air Flame
11
作者 Hemaizia Abdelkader Bentebbiche Abdelhalim 《Fluid Dynamics & Materials Processing》 EI 2022年第6期1749-1762,共14页
The effect of swirl number(Sn)on the flow behavior and combustion characteristics of a lean premixed propane FlameФ=0.5 in a swirl burner configuration was numerically verified in this study.Two-dimensional numerical... The effect of swirl number(Sn)on the flow behavior and combustion characteristics of a lean premixed propane FlameФ=0.5 in a swirl burner configuration was numerically verified in this study.Two-dimensional numerical simulations were performed using ANSYS-Fluent software.For turbulence closure,a standard K-εturbulence model was applied.The turbulence-chemistry interaction scheme was modeled using the Finite Rate-Eddy Dissipation hybrid model(FR/EDM)with a reduced three-step reaction mechanism.The P1 radiation model was used for the flame radiation inside the combustion chamber.Four different swirl numbers were selected(0,0.72,1.05,and 1.4)corresponding to different angles(0°,39°,50°,and 57.8°).The results show that the predicted model agrees very well with the experimental data,especially with respect to the axial and radial velocity and temperature profiles.An outer recirculation zone(ORZ)is present in the combustor corner at Sn=0 and an inner recirculation zone(IRZ)appears at the combustor centerline inlet at a critical Sn=0.72.When the Sn reaches an excessive value,the IRZ moves toward the premixing tube,leading to a flame flashback.The flame structure and its length are strongly affected by changes in the Sn as well as the formation of NOx and CO at the combustor exit. 展开更多
关键词 combustion premixed flame swirl number CO emissions ANGLES ANSYS-fluent
下载PDF
Simulation of Combustion Flow of Methane Gas in a Premixed Low-Swirl Burner using a Partially Premixed Combustion Model
12
作者 XIAO Caiyuan OMIDI Milad +4 位作者 SURENDAR A. ALIZADEH As'ad BOKOV Dmitry O. BINYAMIN TOGHRAIE Davood 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第5期1663-1681,共19页
Because the rotational current stabilizes the flame by creating a recirculation zone,it may increase the risk of reversal.For this reason,low-spin combustion is used to stabilize the flame while preventing flashbacks.... Because the rotational current stabilizes the flame by creating a recirculation zone,it may increase the risk of reversal.For this reason,low-spin combustion is used to stabilize the flame while preventing flashbacks.Therefore,in this study,the combustion flow of methane gas in a low-swirl burner is simulated using a partially premixed combustion model.Furthermore,the fuel flow rate is considered constant.The research parameters include swirl angle(θ=35°–47°),equivalence ratio(φ=0.6–0.9)and inlet axial flow radius(R=0.6–0.7)and effect of these parameters on temperature distribution,flame length,flame rise length,velocity field,and streamlines of the number of pollutant species are investigated.The contours of streamline,temperature distribution,and velocity distribution are also presented for analysis of flow physics.The results show that with increasing the fuel-air ratio,the strength of the axial flow decreases,and the position of the maximum flame temperature shifts toward the inlet of the reactants.The results also reveal that by increasing the swirl angle of the flow,the position of the minimum velocity value(opposite to the direction of the axis)tends towards the outlet.The results also indicate that the maximum temperature of the combustion chamber increases with increasing the swirl angle,and inθ=35°,the maximum temperature is 1711℃and inθ=41°,this value is 1812℃.Finally,by increasing the swirl angle toθ=47°,the maximum flame temperature position is found at a considerable distance from the inlet and is 1842℃. 展开更多
关键词 swirl burner numerical simulation axial velocity premixed combustion V-shaped flame
原文传递
The Investigation of Rayleigh-Taylor Mixing with a Premixed Layer by BHR Turbulence Model
13
作者 Yang Song Lili Wang Pei Wang 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第5期1017-1039,共23页
The Rayleigh-Taylor mixing with a premixed layer is investigated in the present study.ABHR-II turbulence model is employed to simulate the Rayleigh-Taylor mixing with different premixed layers.The implementation of th... The Rayleigh-Taylor mixing with a premixed layer is investigated in the present study.ABHR-II turbulence model is employed to simulate the Rayleigh-Taylor mixing with different premixed layers.The implementation of the BHR-II model is described in detail and validated in canonical problems.Afterwards,the classic Rayleigh-Taylor instability(RTI)with a premixed layer is studied.Effects of density ratio,layer thickness and density profiles on the late time behaviour of classic RTI are analysed,and the results are also compared with ILES data.It turns out that the premixed layer delays the transition time of turbulent mixing.The late time behaviours of different premixed cases show a similar trend with the similarity of their distributions of turbulent kinetic energy.It is also shown that the premixed layer has little effect on the tilted angle in the canonical tilted rig case while the temporal evolution of the turbulent mixing at the early beginning is distinctly influenced by the premixed layer. 展开更多
关键词 turbulence model Rayleigh-Taylor instability premixed layer
原文传递
Development of a fan-stirred constant volume combustion chamber and turbulence measurement with PIV
14
作者 Haoran ZHAO Jinhua WANG +3 位作者 Xiao CAI Zhijian BIAN Hongchao DAI Zuohua HUANG 《Frontiers in Energy》 SCIE CSCD 2022年第6期973-987,共15页
A fan-stirred combustion chamber is developed for spherically expanding flames,with P and T up to 10 bar and 473 K,respectively.Turbulence characteristics are estimated using particle image velocimetry(PIV)at differen... A fan-stirred combustion chamber is developed for spherically expanding flames,with P and T up to 10 bar and 473 K,respectively.Turbulence characteristics are estimated using particle image velocimetry(PIV)at different initial pressures(P=0.5-5 bar),fan frequencies(ω=0-2000 r/min),and impeller diameters(D=100 and 114 mm).The flame propagation of methanol/air is investigated at different turbulence intensities(u′=0-1.77 m/s)and equivalence ratios(f=0.7-1.5).The results show that u′is independent of P and proportional toω,which can be up to 3.5 m/s at 2000 r/min.L_(T)is independent of P and performs a power regression withωapproximately.The turbulent field is homogeneous and isotropic in the central region of the chamber while the inertial subrange of spatial energy spectrum is more collapsed to-5/3 law at a high Re_(T).Compared to laminar expanding flames,the morphology of turbulent expanding flames is wrinkled and the wrinkles will be finer with the growth of turbulence intensity,consistent with the decline of the Taylor scale and the Kolmogorov scale.The determined S_(L)in the present study is in good agreement with that of previous literature.The S_(L)and S_(T)of methanol/air have a non-monotonic trend with f while peak S_(T)is shifted to the richer side compared to S_(L).This indicates that the newly built turbulent combustion chamber is reliable for further experimental study. 展开更多
关键词 fan-stirred combustion chamber turbulence characteristics particle image velocimetry(PIV) methanol turbulent expanding flames
原文传递
Turbulent combustion modeling using a flamelet generated manifold approach——a validation study in Open FOAM 被引量:2
15
作者 Tao LI Fanfu KONG4 +1 位作者 Baopeng XU Xiaohan WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第8期1197-1210,共14页
An OpenFOAM based turbulence combustion solver with flamelet generated manifolds (FGMs) is presented in this paper. A series of flamelets, representative for turbulent flames, are calculated first by a one-dimensional... An OpenFOAM based turbulence combustion solver with flamelet generated manifolds (FGMs) is presented in this paper. A series of flamelets, representative for turbulent flames, are calculated first by a one-dimensional (1D) detailed chemistry solver with the consideration of both transport and stretch/curvature contributions. The flame structure is then parameterized as a function of multiple reaction control variables. A manifold, which collects the 1D flame properties, is built from the 1D flame solutions. The control variables of the mixture fraction and the progress variable are solved from the corresponding transport equations. During the calculation, the scalar variables, e.g., temperature and species concentration, are retrieved from the manifolds by interpolation. A transport equation for NO is solved to improve its prediction accuracy. To verify the ability to deal with the enthalpy loss effect, the temperature retrieved directly from the manifolds is compared with the temperature solved from a transport equation of absolute enthalpy. The resulting FGM-computational fluid dynamics (CFD) coupled code has three significant features, i.e., accurate NO prediction, the ability to treat the heat loss effect and the adoption at the turbulence level, and high quality prediction within practical industrial configurations. The proposed method is validated against the Sandia flame D, and good agreement with the experimental data is obtained. 展开更多
关键词 FLAMELET GENERATED MANIFOLD TURBULENT combustion NO prediction
下载PDF
Effect of turbulence on NO formation in swirling combustion 被引量:2
16
作者 Wang Fang Xie Xiang +1 位作者 Jiang Qi Zhou Lixing 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第4期797-804,共8页
Turbulence affects both combustion and NO formation. Fluctuation correlations are ideally used for quantitative analysis. From the instantaneous chemical reaction rate expression,ignoring the third-order correlation t... Turbulence affects both combustion and NO formation. Fluctuation correlations are ideally used for quantitative analysis. From the instantaneous chemical reaction rate expression,ignoring the third-order correlation terms, the averaged reaction rate will have four terms, including the term of averaged-variable product, a concentration fluctuation correlation term, and temperature-concentration fluctuation correlation term. If the reaction-rate coefficient is denoted as K, the temperature fluctuation would be included in the K fluctuation. In order to quantitatively study the effect of turbulence on NO formation in methane-air swirling combustion, various turbulencechemistry models are tested. The magnitudes of various correlations and their effects on the time-averaged reaction rate are calculated and analyzed, and the simulation results are compared with the experimental measurement data. The results show that among various correlation moments, the correlation between the reaction-rate coefficient K fluctuation with the concentration fluctuation is most important and is a strong nonlinear term. 展开更多
关键词 NO formation Numerical simulation Reaction-rate coefficient Second-order moment model Turbulent combustion model
原文传递
Mathematical Model of Combustion in Blunt Annular Ceramic Burner 被引量:2
17
作者 ZHANG Yin HE You-duo +5 位作者 LI Shi-qi SHEN Yi-shen HUANG Xiao-yu TANG Qing-hua LI Heng-xu WANG Mi 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2001年第2期1-6,共6页
The computer simulation of the combustion process in blast furnace(BF) stove has been studied by using the k-ε-g turbulent diffusion flame model.The combustion process in blunt annular ceramic burner was calculated b... The computer simulation of the combustion process in blast furnace(BF) stove has been studied by using the k-ε-g turbulent diffusion flame model.The combustion process in blunt annular ceramic burner was calculated by using the software.The profiles of gas and air velocity,temperature of the combustion products,concentration of the components,and the shape and length of the flame during combustion have been researched.Compared with the original annular ceramic burner,the new design of the blunt one improves the mixing of the gas and the air significantly,and shortened the length of the flame. 展开更多
关键词 blunt annular ceramic burner combustion turbulent diffusion flame mathematical model hot-blast stove
下载PDF
Numerical Simulation of the Effect of Air Distribution on Turbulent Flow and Combustion in a Tubular Heating Furnace 被引量:1
18
作者 WangJuan MaoYu LiLihong 《Petroleum Science》 SCIE CAS CSCD 2005年第1期44-47,共4页
A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF c... A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF combustion model and a discrete ordinate transfer radiation model were used. The hybrid grid combining a structured and a non-structured grid was generated without any simplification of the complicated geometric configuration around the burner. It was found that the multistage combustion could reduce and control the peak value of temperature. At the same time, it was concluded that the amount of primary air had little effect on the global distribution of velocity and temperature in the furnace, but a great effect on that around the burner. It is recommended that 45% - 65% of the total amount of air be taken in in primary air inlets in the furnace. All the results are important to optimize the combustion progress. 展开更多
关键词 Tubular heating furnace turbulent flow combustion air distribution numerical simulation
下载PDF
Numerical Investigations on the Impact of Turbulent Prandtl Number and Schmidt Number on Supersonic Combustion 被引量:1
19
作者 Yongkang Zheng Chao Yan 《Fluid Dynamics & Materials Processing》 EI 2020年第3期637-650,共14页
The flow field inside the combustor of a scramjet is highly complicated and the related turbulent Prandtl and Schmidt numbers have a significant impact on the effective numerical prediction of such dynamics.As in many... The flow field inside the combustor of a scramjet is highly complicated and the related turbulent Prandtl and Schmidt numbers have a significant impact on the effective numerical prediction of such dynamics.As in many cases researchers set these parameters on the basis of purely empirical laws,assessing their impact(via parametric numerical simulations)is a subject of great importance.In the present work,in particular,two test cases with different characteristics are selected for further evaluation of the role played by these non-dimensional numbers:Burrows-Kurkov case and DLR case.The numerical results indicate that these parameters influence ignition location.Moreover,the temperature distribution is more sensitive to them than to H2O mass fraction and velocity distributions. 展开更多
关键词 Turbulent Prandtl number turbulent Schmidt number ignition position supersonic combustion
下载PDF
Study on the influences of interaction behaviors between multiple combustion-gas jets on expansion characteristics of Taylor cavities 被引量:2
20
作者 Xiaochun Xue Yonggang Yu Qi Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第5期720-731,共12页
The purpose of this study is to investigate means of controlling the interior ballistic stability of a bulk-loaded propellant gun(BLPG).Experiments on the interaction of twin combustion gas jets and liquid medium in... The purpose of this study is to investigate means of controlling the interior ballistic stability of a bulk-loaded propellant gun(BLPG).Experiments on the interaction of twin combustion gas jets and liquid medium in a cylindrical stepped-wall combustion chamber are conducted in detail to obtain time series processes of jet expansion,and a numerical simulation under the same working conditions is also conducted to verify the reliability of the numerical method by comparing numerical results and experimental results.From this,numerical simulations on mutual interference and expansion characteristics of multiple combustion gas jets(four,six,and eight jets) in liquid medium are carried out,and the distribution characteristic of pressure,velocity,temperature,and evolutionary processes of Taylor cavities and streamlines of jet flow Held are obtained in detail.The results of numerical simulations show that when different numbers of combustion gas jets expand in liquid medium,there are two different types of vortices in the jet flow field,including corner vortices of liquid phase near the step and backflow vortices of gas phase within Taylor cavities.Because of these two types of vortices,the radial expansion characteristic of the jets is increased,while changing numbers of combustion gas jets can restrain Kelvin-Helmholtz instability to a certain degree in jet expansion processes,which can at last realize the goal of controlling the interior ballistic stability of a BLPG.The optimum method for both suppressing Kelvin-Helmholtz instability and promoting radial expansion of Taylor cavities can be determined by analyzing the change of characteristic parameters in a jet flow field. 展开更多
关键词 Multiple combustion-gas jets Taylor cavities Kelvin-Helmholtz instability Turbulent mixing
下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部