Dear Editor,The article by Bitirgen et al;published in the journal presents an interesting analysis of keratoconus patients and controls by in vivo corneal confocal microscopy.However,addressing the following observat...Dear Editor,The article by Bitirgen et al;published in the journal presents an interesting analysis of keratoconus patients and controls by in vivo corneal confocal microscopy.However,addressing the following observations regarding the study design used by the authors may help add another dimension to the discussion.The age range of the patient group has been stated as 18-41y and for controls as 18-37y.Although the mean age is similar展开更多
The global growth of the Internet and the rapid expansion of social networks such as Facebook make multilingual sentiment analysis of social media content very necessary. This paper performs the first sentiment analys...The global growth of the Internet and the rapid expansion of social networks such as Facebook make multilingual sentiment analysis of social media content very necessary. This paper performs the first sentiment analysis on code-mixed Bambara-French Facebook comments. We develop four Long Short-term Memory(LSTM)-based models and two Convolutional Neural Network(CNN)-based models, and use these six models, Na?ve Bayes, and Support Vector Machines(SVM) to conduct experiments on a constituted dataset. Social media text written in Bambara is scarce. To mitigate this weakness, this paper uses dictionaries of character and word indexes to produce character and word embedding in place of pre-trained word vectors. We investigate the effect of comment length on the models and perform a comparison among them. The best performing model is a one-layer CNN deep learning model with an accuracy of 83.23 %.展开更多
Temporal specifications for Application Programming Interfaces (APIs) serve as an important basis for many defect detection tools. As these specifications are often not well documented, various approaches have been ...Temporal specifications for Application Programming Interfaces (APIs) serve as an important basis for many defect detection tools. As these specifications are often not well documented, various approaches have been proposed to automatically mine specifications typically from API library source code or from API client programs. However, the library-based approaches take substantial computational resources and produce rather limited useful specifications, while the client-based approaches suffer from high false positive rates. To address the issues of existing approaches, we propose a novel specification mining approach, called MineHEAD, which exploits heterogeneous API data, including information from API client programs as well as API library source code and comments, to produce effective specifications for defect detection with low cost. In particular, MineHEAD first applies client-based specification mining to produce a collection of candidate specifications, and then exploits the related library source code and comments to identify and refine the real specifications from the candidates. Our evaluation results on nine open source projects show that MineHEAD produces effective specifications with average precision of 97.2%.展开更多
文摘Dear Editor,The article by Bitirgen et al;published in the journal presents an interesting analysis of keratoconus patients and controls by in vivo corneal confocal microscopy.However,addressing the following observations regarding the study design used by the authors may help add another dimension to the discussion.The age range of the patient group has been stated as 18-41y and for controls as 18-37y.Although the mean age is similar
基金Supported by the National Natural Science Foundation of China(61272451,61572380,61772383 and 61702379)the Major State Basic Research Development Program of China(2014CB340600)
文摘The global growth of the Internet and the rapid expansion of social networks such as Facebook make multilingual sentiment analysis of social media content very necessary. This paper performs the first sentiment analysis on code-mixed Bambara-French Facebook comments. We develop four Long Short-term Memory(LSTM)-based models and two Convolutional Neural Network(CNN)-based models, and use these six models, Na?ve Bayes, and Support Vector Machines(SVM) to conduct experiments on a constituted dataset. Social media text written in Bambara is scarce. To mitigate this weakness, this paper uses dictionaries of character and word indexes to produce character and word embedding in place of pre-trained word vectors. We investigate the effect of comment length on the models and perform a comparison among them. The best performing model is a one-layer CNN deep learning model with an accuracy of 83.23 %.
基金supported by the National Basic Research 973 Program of China under Grant No.2009CB320703the Science Fund for Creative Research Groups of China under Grant No.60821003
文摘Temporal specifications for Application Programming Interfaces (APIs) serve as an important basis for many defect detection tools. As these specifications are often not well documented, various approaches have been proposed to automatically mine specifications typically from API library source code or from API client programs. However, the library-based approaches take substantial computational resources and produce rather limited useful specifications, while the client-based approaches suffer from high false positive rates. To address the issues of existing approaches, we propose a novel specification mining approach, called MineHEAD, which exploits heterogeneous API data, including information from API client programs as well as API library source code and comments, to produce effective specifications for defect detection with low cost. In particular, MineHEAD first applies client-based specification mining to produce a collection of candidate specifications, and then exploits the related library source code and comments to identify and refine the real specifications from the candidates. Our evaluation results on nine open source projects show that MineHEAD produces effective specifications with average precision of 97.2%.