This study addresses the problem of classifying emotional words based on recorded electroencephalogram (EEG) signals by the single-trial EEG classification technique. Emotional two-character Chinese words are used a...This study addresses the problem of classifying emotional words based on recorded electroencephalogram (EEG) signals by the single-trial EEG classification technique. Emotional two-character Chinese words are used as experimental materials. Positive words versus neutral words and negative words versus neutral words are classified, respectively, using the induced EEG signals. The method of temporally regularized common spatial patterns (TRCSP) is chosen to extract features from the EEG trials, and then single-trial EEG classification is achieved by linear discriminant analysis. Classification accuracies are between 55% and 65%. The statistical significance of the classification accuracies is confirmed by permutation tests, which shows the successful identification of emotional words and neutral ones, and also the ability to identify emotional words. In addition, 10 out of 15 subjects obtain significant classification accuracy for negative words versus neutral words while only 4 are significant for positive words versus neutral words, which demonstrate that negative emotions are more easily identified.展开更多
Abstract-Common spatial pattern (CSP) algorithm is a successful tool in feature estimate of brain-computer interface (BCI). However, CSP is sensitive to outlier and may result in poor outcomes since it is based on...Abstract-Common spatial pattern (CSP) algorithm is a successful tool in feature estimate of brain-computer interface (BCI). However, CSP is sensitive to outlier and may result in poor outcomes since it is based on pooling the covariance matrices of trials. In this paper, we propose a simple yet effective approach, named common spatial pattern ensemble (CSPE) classifier, to improve CSP performance. Through division of recording channels, multiple CSP filters are constructed. By projection, log-operation, and subtraction on the original signal, an ensemble classifier, majority voting, is achieved and outlier contaminations are alleviated. Experiment results demonstrate that the proposed CSPE classifier is robust to various artifacts and can achieve an average accuracy of 83.02%.展开更多
Due to the scarcity of resources of Ziziphi spinosae semen (ZSS), many inferior goods and even adulterants are generally found in medicine markets. To strengthen the quality control, HPLC fingerprint common pattern ...Due to the scarcity of resources of Ziziphi spinosae semen (ZSS), many inferior goods and even adulterants are generally found in medicine markets. To strengthen the quality control, HPLC fingerprint common pattern established in this paper showed three main bioactive compounds in one chromatogram simultaneously. Principal component analysis based on DAD signals could discriminate adulterants and inferiorities. Principal component analysis indicated that all samples could be mainly regrouped into two main clusters according to the first principal component (PC1, redefined as Vicenin II) and the second principal component (PC2, redefined as zizyphusine). PC1 and PC2 could explain 91.42%of the variance. Content of zizyphusine fluctuated more greatly than that of spinosin, and this result was also confirmed by the HPTLC result. Samples with low content of jujubosides and two common adulterants could not be used equivalently with authenticated ones in clinic, while one reference standard extract could substitute the crude drug in pharmaceutical production. Giving special consideration to the well-known bioactive saponins but with low response by end absorption, a fast and cheap HPTLC method for quality control of ZSS was developed and the result obtained was commensurate well with that of HPLC analysis. Samples having similar fingerprints to HPTLC common pattern targeting at saponins could be regarded as authenticated ones. This work provided a faster and cheaper way for quality control of ZSS and laid foundation for establishing a more effective quality control method for ZSS.展开更多
Abstract-The development of asynchronous brain-computer interface (BCI) based on motor imagery (M1) poses the research in algorithms for detecting the nontask states (i.e., idle state) and the design of continuo...Abstract-The development of asynchronous brain-computer interface (BCI) based on motor imagery (M1) poses the research in algorithms for detecting the nontask states (i.e., idle state) and the design of continuous classifiers that classify continuously incoming electroencephalogram (EEG) samples. An algorithm is proposed in this paper which integrates two two-class classifiers to detect idle state and utilizes a sliding window to achieve continuous outputs. The common spatial pattern (CSP) algorithm is used to extract features of EEG signals and the linear support vector machine (SVM) is utilized to serve as classifier. The algorithm is applied on dataset IVb of BCI competition Ⅲ, with a resulting mean square error of 0.66. The result indicates that the proposed algorithm is feasible in the first step of the development of asynchronous systems.展开更多
At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels w...At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels will result in a large amount of calculation.Components irrelevant to the task will interfere with the required features,which is not conducive to the real-time processing of EEG data.Using too few channels will result in the loss of useful information and low robustness.A method of selecting data channels for motion imagination is proposed based on the time-frequency cross mutual information(TFCMI).This method determines the required data channels in a targeted manner,uses the common spatial pattern mode for feature extraction,and uses support vector ma-chine(SVM)for feature classification.An experiment is designed to collect motor imagery EEG da-ta with four experimenters and adds brain-computer interface(BCI)Competition IV public motor imagery experimental data to verify the method.The data demonstrates that compared with the meth-od of selecting too many or too few data channels,the time-frequency cross mutual information meth-od using motor imagery can improve the recognition accuracy and reduce the amount of calculation.展开更多
Classifying single-trial electroencephalogram(EEG)based motor imagery(MI)tasks is extensively used to control brain-computer interface(BCI)applications,as a communication bridge between humans and computers.However,th...Classifying single-trial electroencephalogram(EEG)based motor imagery(MI)tasks is extensively used to control brain-computer interface(BCI)applications,as a communication bridge between humans and computers.However,the low signal-to-noise ratio and individual differences of EEG can affect the classification results negatively.In this paper,we propose an improved common spatial pattern(B-CSP)method to extract features for alleviating these adverse effects.First,for different subjects,the method of Bhattacharyya distance is used to select the optimal frequency band of each electrode including strong event-related desynchronization(ERD)and event-related synchronization(ERS)patterns;then the signals of the optimal frequency band are decomposed into spatial patterns,and the features that can describe the maximum differences of two classes of MI are extracted from the EEG data.The proposed method is applied to the public data set and experimental data set to extract features which are input into a back propagation neural network(BPNN)classifier to classify single-trial MI EEG.Another two conventional feature extraction methods,original common spatial pattern(CSP)and autoregressive(AR),are used for comparison.An improved classification performance for both data sets(public data set:91.25%±1.77%for left hand vs.foot and84.50%±5.42%for left hand vs.right hand;experimental data set:90.43%±4.26%for left hand vs.foot)verifies the advantages of the B-CSP method over conventional methods.The results demonstrate that our proposed B-CSP method can classify EEG-based MI tasks effectively,and this study provides practical and theoretical approaches to BCI applications.展开更多
基金The National Natural Science Foundation of China(No.61375118)the Program for New Century Excellent Talents in University of China(No.NCET-12-0115)
文摘This study addresses the problem of classifying emotional words based on recorded electroencephalogram (EEG) signals by the single-trial EEG classification technique. Emotional two-character Chinese words are used as experimental materials. Positive words versus neutral words and negative words versus neutral words are classified, respectively, using the induced EEG signals. The method of temporally regularized common spatial patterns (TRCSP) is chosen to extract features from the EEG trials, and then single-trial EEG classification is achieved by linear discriminant analysis. Classification accuracies are between 55% and 65%. The statistical significance of the classification accuracies is confirmed by permutation tests, which shows the successful identification of emotional words and neutral ones, and also the ability to identify emotional words. In addition, 10 out of 15 subjects obtain significant classification accuracy for negative words versus neutral words while only 4 are significant for positive words versus neutral words, which demonstrate that negative emotions are more easily identified.
基金supported by the National Natural Science Foundation of China under Grant No. 30525030, 60701015, and 60736029.
文摘Abstract-Common spatial pattern (CSP) algorithm is a successful tool in feature estimate of brain-computer interface (BCI). However, CSP is sensitive to outlier and may result in poor outcomes since it is based on pooling the covariance matrices of trials. In this paper, we propose a simple yet effective approach, named common spatial pattern ensemble (CSPE) classifier, to improve CSP performance. Through division of recording channels, multiple CSP filters are constructed. By projection, log-operation, and subtraction on the original signal, an ensemble classifier, majority voting, is achieved and outlier contaminations are alleviated. Experiment results demonstrate that the proposed CSPE classifier is robust to various artifacts and can achieve an average accuracy of 83.02%.
文摘Due to the scarcity of resources of Ziziphi spinosae semen (ZSS), many inferior goods and even adulterants are generally found in medicine markets. To strengthen the quality control, HPLC fingerprint common pattern established in this paper showed three main bioactive compounds in one chromatogram simultaneously. Principal component analysis based on DAD signals could discriminate adulterants and inferiorities. Principal component analysis indicated that all samples could be mainly regrouped into two main clusters according to the first principal component (PC1, redefined as Vicenin II) and the second principal component (PC2, redefined as zizyphusine). PC1 and PC2 could explain 91.42%of the variance. Content of zizyphusine fluctuated more greatly than that of spinosin, and this result was also confirmed by the HPTLC result. Samples with low content of jujubosides and two common adulterants could not be used equivalently with authenticated ones in clinic, while one reference standard extract could substitute the crude drug in pharmaceutical production. Giving special consideration to the well-known bioactive saponins but with low response by end absorption, a fast and cheap HPTLC method for quality control of ZSS was developed and the result obtained was commensurate well with that of HPLC analysis. Samples having similar fingerprints to HPTLC common pattern targeting at saponins could be regarded as authenticated ones. This work provided a faster and cheaper way for quality control of ZSS and laid foundation for establishing a more effective quality control method for ZSS.
基金supported by the National Natural Science Foundation of China under Grant No. 30525030, 60736029, 60701015, and 30870655.
文摘Abstract-The development of asynchronous brain-computer interface (BCI) based on motor imagery (M1) poses the research in algorithms for detecting the nontask states (i.e., idle state) and the design of continuous classifiers that classify continuously incoming electroencephalogram (EEG) samples. An algorithm is proposed in this paper which integrates two two-class classifiers to detect idle state and utilizes a sliding window to achieve continuous outputs. The common spatial pattern (CSP) algorithm is used to extract features of EEG signals and the linear support vector machine (SVM) is utilized to serve as classifier. The algorithm is applied on dataset IVb of BCI competition Ⅲ, with a resulting mean square error of 0.66. The result indicates that the proposed algorithm is feasible in the first step of the development of asynchronous systems.
基金Supported by the National Natural Science Foundation of China(No.51775325)National Key R&D Program of China(No.2018YFB1309200)the Young Eastern Scholars Program of Shanghai(No.QD2016033).
文摘At present,multi-channel electroencephalogram(EEG)signal acquisition equipment is used to collect motor imagery EEG data,and there is a problem with selecting multiple acquisition channels.Choosing too many channels will result in a large amount of calculation.Components irrelevant to the task will interfere with the required features,which is not conducive to the real-time processing of EEG data.Using too few channels will result in the loss of useful information and low robustness.A method of selecting data channels for motion imagination is proposed based on the time-frequency cross mutual information(TFCMI).This method determines the required data channels in a targeted manner,uses the common spatial pattern mode for feature extraction,and uses support vector ma-chine(SVM)for feature classification.An experiment is designed to collect motor imagery EEG da-ta with four experimenters and adds brain-computer interface(BCI)Competition IV public motor imagery experimental data to verify the method.The data demonstrates that compared with the meth-od of selecting too many or too few data channels,the time-frequency cross mutual information meth-od using motor imagery can improve the recognition accuracy and reduce the amount of calculation.
基金Project supported by the National Natural Science Foundation of China(Nos.61702454 and 61772468)the MOE Project of Humanities and Social Sciences,China(No.17YJC870018)+1 种基金the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,China(No.GB201901006)the Philosophy and Social Science Planning Fund Project of Zhejiang Province,China(No.20NDQN260YB)
文摘Classifying single-trial electroencephalogram(EEG)based motor imagery(MI)tasks is extensively used to control brain-computer interface(BCI)applications,as a communication bridge between humans and computers.However,the low signal-to-noise ratio and individual differences of EEG can affect the classification results negatively.In this paper,we propose an improved common spatial pattern(B-CSP)method to extract features for alleviating these adverse effects.First,for different subjects,the method of Bhattacharyya distance is used to select the optimal frequency band of each electrode including strong event-related desynchronization(ERD)and event-related synchronization(ERS)patterns;then the signals of the optimal frequency band are decomposed into spatial patterns,and the features that can describe the maximum differences of two classes of MI are extracted from the EEG data.The proposed method is applied to the public data set and experimental data set to extract features which are input into a back propagation neural network(BPNN)classifier to classify single-trial MI EEG.Another two conventional feature extraction methods,original common spatial pattern(CSP)and autoregressive(AR),are used for comparison.An improved classification performance for both data sets(public data set:91.25%±1.77%for left hand vs.foot and84.50%±5.42%for left hand vs.right hand;experimental data set:90.43%±4.26%for left hand vs.foot)verifies the advantages of the B-CSP method over conventional methods.The results demonstrate that our proposed B-CSP method can classify EEG-based MI tasks effectively,and this study provides practical and theoretical approaches to BCI applications.