Gaussian beam prestack depth migration is an accurate imaging method of subsurface media. Prestack depth migration of multicomponent seismic data improves the accuracy of imaging subsurface complex geological structur...Gaussian beam prestack depth migration is an accurate imaging method of subsurface media. Prestack depth migration of multicomponent seismic data improves the accuracy of imaging subsurface complex geological structures. Viscoelastic prestack depth migration is of practical significance because it considers the viscosity of the subsurface media. We use Gaussian beam migration to compensate for the attenuation in multicomponent seismic data. First, we use the Gaussian beam method to simulate the wave propagation in a viscoelastic medium and introduce the complex velocity Q-related and exact viscoelastic Zoeppritz equation. Second, we discuss PP- and PS-wave Gaussian beam prestack depth migration algorithms for common-shot gathers to derive expressions for the attenuation and compensation. The algorithms correct the amplitude attenuation and phase distortion caused by Q, and realize multicomponent Gaussian beam prestack depth migration based on the attenuation compensation and account for the effect of inaccurate Q on migration. Numerical modeling suggests that the imaging resolution of viscoelastic Gaussian beam prestack depth migration is high when the viscosity of the subsurface is considered.展开更多
The absorption effect of actual subsurface media can weaken wavefield energy, decrease the dominating frequency, and further lead to reduced resolution. In migration, some actions can be taken to compensate for the ab...The absorption effect of actual subsurface media can weaken wavefield energy, decrease the dominating frequency, and further lead to reduced resolution. In migration, some actions can be taken to compensate for the absorption effect and enhance the resolution. In this paper, we derive a one-way wave equation with an attenuation term based on the time- space domain high angle one-way wave equation. A complicated geological model is then designed and synthetic shot gathers are simulated with acoustic wave equations without and with an absorbing term. The derived one-way wave equation is applied to the migration of the synthetic gathers without and with attenuation compensation for the simulated shot gathers. Three migration profiles are obtained. The first and second profiles are from the shot gathers without and with attenuation using the migration method without compensation, the third one is from the shot gathers with attenuation using the migration method with compensation. The first and third profiles are almost the same, and the second profile is different from the others below the absorptive layers. The amplitudes of the interfaces below the absorptive layers are weak because of their absorption. This method is also applied to field data. It is concluded from the migration examples that the migration method discussed in this paper is feasible.展开更多
Beamlet sources have strong local and directional character and can easily accomplish local illumination and migration. Besides, they provide better migration results than conventional migration methods. We introduce ...Beamlet sources have strong local and directional character and can easily accomplish local illumination and migration. Besides, they provide better migration results than conventional migration methods. We introduce the basic principles of beamlet prestack depth migration that includes a windowed Fourier transform and frame theory. We explain the Gabor-Daubechies (G-D) frame based on a Gaussian function. Beamlet decomposition provides information on the local space and direction of wavefield. We synthesize the beamlet source and beamlet records in the wavelet domain using both rectangle and Gaussian windows and then extrapolate the synthesized data with a Fourier finite-difference operator. We test the method using the standard Marmousi model. By comparing and analyzing the migration results of single directional beamlet and beamlets with different windows and directions, we demonstrate the validity of the prestack depth migration with Gaussian beamlets method.展开更多
The offset-domain prestack depth migration with optimal separable approximation, based on the double square root equation, is used to image complex media with large and rapid velocity variations. The method downward c...The offset-domain prestack depth migration with optimal separable approximation, based on the double square root equation, is used to image complex media with large and rapid velocity variations. The method downward continues the source and the receiver wavefields simultaneously. The mixed domain algorithm with forward Fourier and inverse Fourier transform is used to construct the double square root equation wavefield extrapolation operator. This operator separates variables in the wave number domain and variables in the space domain. The phase operation is implemented in the wave number domain, whereas the time delay for lateral velocity variation is corrected in the space domain. The migration algorithm is efficient since the seismic data are not computed shot by shot. The data set test of the Marmousi model indicates that the offset-domain migration provides a satisfied seismic migration section on which complex geologic structures are imaged in media with large and rapid lateral velocity variations.展开更多
Walkaway VSP cannot obtain accurate velocity field,as it asymmetrically reflects ray path and provides uneven coverage to underground target,thereby presenting issues related to imaging quality.In this study,we propos...Walkaway VSP cannot obtain accurate velocity field,as it asymmetrically reflects ray path and provides uneven coverage to underground target,thereby presenting issues related to imaging quality.In this study,we propose combining traveltime tomography and prestack depth migration for VSP of an angle-domain walkaway,in a bid to establish accurate two-dimensional and three-dimensional(3 D)velocity models.First,residual curvature was defined to update velocity,and an accurate velocity field was established.To establish a high-precision velocity model,we deduced the relationship between the residual depth and traveltime of common imaging gathers(CIGs)in walkaway VSP.Solving renewal velocity using the least squares method,a four-parameter tomographic inversion equation was derived comprising formation dip angle,incidence angle,residual depth,and sensitivity matrix.In the angle domain,the reflected wave was divided into up-and down-transmitted waves and their traveltimes were calculated.The systematic cumulative method was employed in prestack depth migration of a complex surface.Through prestack depth migration,the offset-domain CIGs were obtained,and dip angle was established by defining the stack section horizon.Runge–Kutta ray tracing was employed to calculate the ray path from the reflection point to the detection point,to determine the incident angle,and to subsequently calculate the ray path from the reflection point to the irregular surface.The offset-domain residual depths were mapped to the angle domain,and a new tomographic equation was established and solved.Application in the double complex area of the Tarim Basin showed the four-parameter tomographic inversion equation derived in this paper to be both correct and practical and that the migration algorithm was able to adapt to the complex surface.展开更多
Prestack depth migration for seismic reflection data is commonly used tool for imaging complex geological structures such as salt domes, faults, thrust belts, and stratigraphic structures. Phase shift plus interpolati...Prestack depth migration for seismic reflection data is commonly used tool for imaging complex geological structures such as salt domes, faults, thrust belts, and stratigraphic structures. Phase shift plus interpolation (PSPI) algorithm is a useful tool to directly solve a wave equation and the results have natural properties of the wave equation. Amplitude and phase characteristics, in particular, are better preserved. The PSPI algorithm is widely used in hydrocarbon exploration because of its simplicity, efficiency, and reduced efforts for computation. However, meaningful depth image of 3D subsurface requires parallel computing to handle heavy computing time and great amount of input data. We implemented a parallelized version of 3D PSPI for prestack depth migration using Open-Multi-Processing (Open MP) library. We verified its performance through applications to 3D SEG/EAGE salt model with a small scale Linux cluster. Phase-shift was performed in the vertical and horizontal directions, respectively, and then interpolated at each node. This gave a single image gather according to shot gather. After summation of each single image gather, we got a 3D stacked image in the depth domain. The numerical model example shows good agree- ment with the original geological model.展开更多
Traditional pre-stack depth migration can only provide subsurface structural information. However, simple structure information is insufficient for petroleum exploration which also needs amplitude information proporti...Traditional pre-stack depth migration can only provide subsurface structural information. However, simple structure information is insufficient for petroleum exploration which also needs amplitude information proportional to reflection coefficients. In recent years, pre-stack depth migration algorithms which preserve amplitudes and based on the one- way wave equation have been developed. Using the method in the shot domain requires a deconvolution imaging condition which produces some instability in areas with complicated structure and dramatic lateral variation in velocity. Depth migration with preserved amplitude based on the angle domain can overcome the instability of the one-way wave migration imaging condition with preserved amplitude. It can also offer provide velocity analysis in the angle domain of common imaging point gathers. In this paper, based on the foundation of the one-way wave continuation operator with preserved amplitude, we realized the preserved amplitude prestack depth migration in the angle domain. Models and real data validate the accuracy of the method.展开更多
Kirchhoff beam migration is a beam migration method, which focuses on rapid imaging of geological structures. Although this imaging method ignores the amplitude information in the calculation process, it can calculate...Kirchhoff beam migration is a beam migration method, which focuses on rapid imaging of geological structures. Although this imaging method ignores the amplitude information in the calculation process, it can calculate multi-arrival traveltime. This migration method takes into account both imaging accuracy and computational efficiency. Kirchhoff beam migration employs coarse grid techniques in several key steps such as traveltime calculation, weight function calculation, and imaging calculation. The selection of the coarse mesh size has an important influence on the computational efficiency and imaging accuracy of the migration imaging method. This paper will analyze this influence and illustrate the analysis results by the Marmousi data sets.展开更多
With increased computational power, reverse-time prestack depth migration(RT-PSDM) has become a preferred imaging tool in seismic exploration, yet its use has remained relatively limited in ground-penetrating radar...With increased computational power, reverse-time prestack depth migration(RT-PSDM) has become a preferred imaging tool in seismic exploration, yet its use has remained relatively limited in ground-penetrating radar(GPR) applications. Complex topography alters the wavefield kinematics making for a challenging imaging problem. Model simulations show that topographic variation can substantially distort reflection amplitudes due to irregular wavefield spreading, attenuation anomalies due to irregular path lengths, and focusing and defocusing effects at the surface. The effects are magnified when the topographic variations are on the same order as the depth of investigation––a situation that is often encountered in GPR investigations. Here, I use a full wave-equation RT-PSDM algorithm to image GPR data in the presence of large topographic variability relative to the depth of investigation. The source and receiver wavefields are propagated directly from the topographic surface and this approach inherently corrects for irregular kinematics, spreading and attenuation. The results show that when GPR data are acquired in areas of extreme topography, RT-PSDM can accurately reconstruct reflector geometry as well as reflection amplitude.展开更多
In this paper the methods of wave theory based prestack depth migration and their implementation are studied. Using the splitting of wave operator, the wavefield extrapolation equations are deduced and the numerical s...In this paper the methods of wave theory based prestack depth migration and their implementation are studied. Using the splitting of wave operator, the wavefield extrapolation equations are deduced and the numerical schemes are presented. The numerical tests for SEG/EAEG model with MPI are performed on the PC-cluster. The numerical results show that the methods of single-shot (common-shot) migration and synthesized-shot migration are of practical values and can be applied to field data processing of 3D prestack depth migration.展开更多
基金financially supported by the National Natural Science Foundation of China(No.U1262207)the National Science and Technology Major Project of China(Nos.2011 ZX05023-005-005 and 2011 ZX05019-006)the PetroChina Innovation Foundation(No.2013D-5006-0303)
文摘Gaussian beam prestack depth migration is an accurate imaging method of subsurface media. Prestack depth migration of multicomponent seismic data improves the accuracy of imaging subsurface complex geological structures. Viscoelastic prestack depth migration is of practical significance because it considers the viscosity of the subsurface media. We use Gaussian beam migration to compensate for the attenuation in multicomponent seismic data. First, we use the Gaussian beam method to simulate the wave propagation in a viscoelastic medium and introduce the complex velocity Q-related and exact viscoelastic Zoeppritz equation. Second, we discuss PP- and PS-wave Gaussian beam prestack depth migration algorithms for common-shot gathers to derive expressions for the attenuation and compensation. The algorithms correct the amplitude attenuation and phase distortion caused by Q, and realize multicomponent Gaussian beam prestack depth migration based on the attenuation compensation and account for the effect of inaccurate Q on migration. Numerical modeling suggests that the imaging resolution of viscoelastic Gaussian beam prestack depth migration is high when the viscosity of the subsurface is considered.
基金supported in part by the National Natural Science Foundation of China(No.40974069,41174119)the Research of Novel Method and Technology of Geophysical Prospecting,CNPC(No.2011A-3602)the National Major Science and Technology Program(No.2011ZX05010,2011ZX05024)
文摘The absorption effect of actual subsurface media can weaken wavefield energy, decrease the dominating frequency, and further lead to reduced resolution. In migration, some actions can be taken to compensate for the absorption effect and enhance the resolution. In this paper, we derive a one-way wave equation with an attenuation term based on the time- space domain high angle one-way wave equation. A complicated geological model is then designed and synthetic shot gathers are simulated with acoustic wave equations without and with an absorbing term. The derived one-way wave equation is applied to the migration of the synthetic gathers without and with attenuation compensation for the simulated shot gathers. Three migration profiles are obtained. The first and second profiles are from the shot gathers without and with attenuation using the migration method without compensation, the third one is from the shot gathers with attenuation using the migration method with compensation. The first and third profiles are almost the same, and the second profile is different from the others below the absorptive layers. The amplitudes of the interfaces below the absorptive layers are weak because of their absorption. This method is also applied to field data. It is concluded from the migration examples that the migration method discussed in this paper is feasible.
基金This project is sponsored by the National Natural Science Foundation (40474041), CNPC Young Innovation Fund (04E7040), the Post-doctoral Research Station of Zhongyuan 0ilfield, Jiangsu 0ilfield, and CNPC Geophysical Laboratories at the China University of Petroleum (East China).
文摘Beamlet sources have strong local and directional character and can easily accomplish local illumination and migration. Besides, they provide better migration results than conventional migration methods. We introduce the basic principles of beamlet prestack depth migration that includes a windowed Fourier transform and frame theory. We explain the Gabor-Daubechies (G-D) frame based on a Gaussian function. Beamlet decomposition provides information on the local space and direction of wavefield. We synthesize the beamlet source and beamlet records in the wavelet domain using both rectangle and Gaussian windows and then extrapolate the synthesized data with a Fourier finite-difference operator. We test the method using the standard Marmousi model. By comparing and analyzing the migration results of single directional beamlet and beamlets with different windows and directions, we demonstrate the validity of the prestack depth migration with Gaussian beamlets method.
基金This paper is supported by the National Natural Science Foundation of China (No. 40474047)State Key Laboratory of Geological Processes and Mineral Resources (No. GPMR200654)the Focused Subject Program of Beijing (No. XK104910598).
文摘The offset-domain prestack depth migration with optimal separable approximation, based on the double square root equation, is used to image complex media with large and rapid velocity variations. The method downward continues the source and the receiver wavefields simultaneously. The mixed domain algorithm with forward Fourier and inverse Fourier transform is used to construct the double square root equation wavefield extrapolation operator. This operator separates variables in the wave number domain and variables in the space domain. The phase operation is implemented in the wave number domain, whereas the time delay for lateral velocity variation is corrected in the space domain. The migration algorithm is efficient since the seismic data are not computed shot by shot. The data set test of the Marmousi model indicates that the offset-domain migration provides a satisfied seismic migration section on which complex geologic structures are imaged in media with large and rapid lateral velocity variations.
基金supported by the national project "Geophysical Complex Technologies for Reservoirs and Unconventional Gas Reservoirs"(No.2017 ZX05018-004-003)
文摘Walkaway VSP cannot obtain accurate velocity field,as it asymmetrically reflects ray path and provides uneven coverage to underground target,thereby presenting issues related to imaging quality.In this study,we propose combining traveltime tomography and prestack depth migration for VSP of an angle-domain walkaway,in a bid to establish accurate two-dimensional and three-dimensional(3 D)velocity models.First,residual curvature was defined to update velocity,and an accurate velocity field was established.To establish a high-precision velocity model,we deduced the relationship between the residual depth and traveltime of common imaging gathers(CIGs)in walkaway VSP.Solving renewal velocity using the least squares method,a four-parameter tomographic inversion equation was derived comprising formation dip angle,incidence angle,residual depth,and sensitivity matrix.In the angle domain,the reflected wave was divided into up-and down-transmitted waves and their traveltimes were calculated.The systematic cumulative method was employed in prestack depth migration of a complex surface.Through prestack depth migration,the offset-domain CIGs were obtained,and dip angle was established by defining the stack section horizon.Runge–Kutta ray tracing was employed to calculate the ray path from the reflection point to the detection point,to determine the incident angle,and to subsequently calculate the ray path from the reflection point to the irregular surface.The offset-domain residual depths were mapped to the angle domain,and a new tomographic equation was established and solved.Application in the double complex area of the Tarim Basin showed the four-parameter tomographic inversion equation derived in this paper to be both correct and practical and that the migration algorithm was able to adapt to the complex surface.
文摘Prestack depth migration for seismic reflection data is commonly used tool for imaging complex geological structures such as salt domes, faults, thrust belts, and stratigraphic structures. Phase shift plus interpolation (PSPI) algorithm is a useful tool to directly solve a wave equation and the results have natural properties of the wave equation. Amplitude and phase characteristics, in particular, are better preserved. The PSPI algorithm is widely used in hydrocarbon exploration because of its simplicity, efficiency, and reduced efforts for computation. However, meaningful depth image of 3D subsurface requires parallel computing to handle heavy computing time and great amount of input data. We implemented a parallelized version of 3D PSPI for prestack depth migration using Open-Multi-Processing (Open MP) library. We verified its performance through applications to 3D SEG/EAGE salt model with a small scale Linux cluster. Phase-shift was performed in the vertical and horizontal directions, respectively, and then interpolated at each node. This gave a single image gather according to shot gather. After summation of each single image gather, we got a 3D stacked image in the depth domain. The numerical model example shows good agree- ment with the original geological model.
基金supported by the National 863 Program(Grant No.2006AA06Z206)the National 973 Program(Grant No.2007CB209605)CNPC geophysical laboratories and Ph.D innovative funding in China University of Petroleum(East China)
文摘Traditional pre-stack depth migration can only provide subsurface structural information. However, simple structure information is insufficient for petroleum exploration which also needs amplitude information proportional to reflection coefficients. In recent years, pre-stack depth migration algorithms which preserve amplitudes and based on the one- way wave equation have been developed. Using the method in the shot domain requires a deconvolution imaging condition which produces some instability in areas with complicated structure and dramatic lateral variation in velocity. Depth migration with preserved amplitude based on the angle domain can overcome the instability of the one-way wave migration imaging condition with preserved amplitude. It can also offer provide velocity analysis in the angle domain of common imaging point gathers. In this paper, based on the foundation of the one-way wave continuation operator with preserved amplitude, we realized the preserved amplitude prestack depth migration in the angle domain. Models and real data validate the accuracy of the method.
基金Supported by projects of the Natural Science Foundation of China(No.41804100)the China Postdoctoral Science Foundation(No.2018M640910)the Fundamental Research Funds for the Central Universities(No.2682018CX36)
文摘Kirchhoff beam migration is a beam migration method, which focuses on rapid imaging of geological structures. Although this imaging method ignores the amplitude information in the calculation process, it can calculate multi-arrival traveltime. This migration method takes into account both imaging accuracy and computational efficiency. Kirchhoff beam migration employs coarse grid techniques in several key steps such as traveltime calculation, weight function calculation, and imaging calculation. The selection of the coarse mesh size has an important influence on the computational efficiency and imaging accuracy of the migration imaging method. This paper will analyze this influence and illustrate the analysis results by the Marmousi data sets.
基金The Herbette Fondation at the University of Lausanne, Switzerland
文摘With increased computational power, reverse-time prestack depth migration(RT-PSDM) has become a preferred imaging tool in seismic exploration, yet its use has remained relatively limited in ground-penetrating radar(GPR) applications. Complex topography alters the wavefield kinematics making for a challenging imaging problem. Model simulations show that topographic variation can substantially distort reflection amplitudes due to irregular wavefield spreading, attenuation anomalies due to irregular path lengths, and focusing and defocusing effects at the surface. The effects are magnified when the topographic variations are on the same order as the depth of investigation––a situation that is often encountered in GPR investigations. Here, I use a full wave-equation RT-PSDM algorithm to image GPR data in the presence of large topographic variability relative to the depth of investigation. The source and receiver wavefields are propagated directly from the topographic surface and this approach inherently corrects for irregular kinematics, spreading and attenuation. The results show that when GPR data are acquired in areas of extreme topography, RT-PSDM can accurately reconstruct reflector geometry as well as reflection amplitude.
基金This work was supported by Major State Basic Research Program of Peoples's Republic of China(No.G1999032800)Major Project(No.49894190)the National Natural Science Foundation of China(Grant No.40004003).All numerical experiments were completed on the PC-cluster in the State Key Lab of Scientific/Engineering Computing.
文摘In this paper the methods of wave theory based prestack depth migration and their implementation are studied. Using the splitting of wave operator, the wavefield extrapolation equations are deduced and the numerical schemes are presented. The numerical tests for SEG/EAEG model with MPI are performed on the PC-cluster. The numerical results show that the methods of single-shot (common-shot) migration and synthesized-shot migration are of practical values and can be applied to field data processing of 3D prestack depth migration.
基金supported by the National Natural Science Foundation of China(No.62175100)Spark Program of Earthquake Sciences of CEA(No.XH22015A)+1 种基金Henan Province Seismic Structure Exploration project(YCZC-2020-950)Special Fund of Chinese Central Government for Basic Scientific Research Operations in Commonweal Research Institutes(No.IGCEA1902)。