期刊文献+
共找到4,512篇文章
< 1 2 226 >
每页显示 20 50 100
Ultimately Bounded Output Feedback Control for Networked Nonlinear Systems With Unreliable Communication Channel: A Buffer-Aided Strategy
1
作者 Yuhan Zhang Zidong Wang +2 位作者 Lei Zou Yun Chen Guoping Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1566-1578,共13页
This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication... This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy. 展开更多
关键词 Buffer-aided strategy neural networks nonlinear control output-feedback control unreliable communication channel
下载PDF
Falcon Optimization Algorithm-Based Energy Efficient Communication Protocol for Cluster-Based Vehicular Networks
2
作者 Youseef Alotaibi B.Rajasekar +1 位作者 R.Jayalakshmi Surendran Rajendran 《Computers, Materials & Continua》 SCIE EI 2024年第3期4243-4262,共20页
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect... Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods. 展开更多
关键词 Vehicular networks communication protocol CLUSTERING falcon optimization algorithm ROUTING
下载PDF
Intellicise Model Transmission for Semantic Communication in Intelligence-Native 6G Networks
3
作者 Wang Yining Han Shujun +4 位作者 Xu Xiaodong Meng Rui Liang Haotai Dong Chen Zhang Ping 《China Communications》 SCIE CSCD 2024年第7期95-112,共18页
To facilitate emerging applications and demands of edge intelligence(EI)-empowered 6G networks,model-driven semantic communications have been proposed to reduce transmission volume by deploying artificial intelligence... To facilitate emerging applications and demands of edge intelligence(EI)-empowered 6G networks,model-driven semantic communications have been proposed to reduce transmission volume by deploying artificial intelligence(AI)models that provide abilities of semantic extraction and recovery.Nevertheless,it is not feasible to preload all AI models on resource-constrained terminals.Thus,in-time model transmission becomes a crucial problem.This paper proposes an intellicise model transmission architecture to guarantee the reliable transmission of models for semantic communication.The mathematical relationship between model size and performance is formulated by employing a recognition error function supported with experimental data.We consider the characteristics of wireless channels and derive the closed-form expression of model transmission outage probability(MTOP)over the Rayleigh channel.Besides,we define the effective model accuracy(EMA)to evaluate the model transmission performance of both communication and intelligence.Then we propose a joint model selection and resource allocation(JMSRA)algorithm to maximize the average EMA of all users.Simulation results demonstrate that the average EMA of the JMSRA algorithm outperforms baseline algorithms by about 22%. 展开更多
关键词 edge intelligence(EI) model transmission outage probability and accuracy resource allocation semantic communication
下载PDF
Secrecy Outage Probability Minimization in Wireless-Powered Communications Using an Improved Biogeography-Based Optimization-Inspired Recurrent Neural Network
4
作者 Mohammad Mehdi Sharifi Nevisi Elnaz Bashir +3 位作者 Diego Martín Seyedkian Rezvanjou Farzaneh Shoushtari Ehsan Ghafourian 《Computers, Materials & Continua》 SCIE EI 2024年第3期3971-3991,共21页
This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The mai... This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The main contribution of the paper is a novel approach to minimize the secrecy outage probability(SOP)in these systems.Minimizing SOP is crucial for maintaining the confidentiality and integrity of data,especially in situations where the transmission of sensitive data is critical.Our proposed method harnesses the power of an improved biogeography-based optimization(IBBO)to effectively train a recurrent neural network(RNN).The proposed IBBO introduces an innovative migration model.The core advantage of IBBO lies in its adeptness at maintaining equilibrium between exploration and exploitation.This is accomplished by integrating tactics such as advancing towards a random habitat,adopting the crossover operator from genetic algorithms(GA),and utilizing the global best(Gbest)operator from particle swarm optimization(PSO)into the IBBO framework.The IBBO demonstrates its efficacy by enabling the RNN to optimize the system parameters,resulting in significant outage probability reduction.Through comprehensive simulations,we showcase the superiority of the IBBO-RNN over existing approaches,highlighting its capability to achieve remarkable gains in SOP minimization.This paper compares nine methods for predicting outage probability in wireless-powered communications.The IBBO-RNN achieved the highest accuracy rate of 98.92%,showing a significant performance improvement.In contrast,the standard RNN recorded lower accuracy rates of 91.27%.The IBBO-RNN maintains lower SOP values across the entire signal-to-noise ratio(SNR)spectrum tested,suggesting that the method is highly effective at optimizing system parameters for improved secrecy even at lower SNRs. 展开更多
关键词 Wireless-powered communications secrecy outage probability improved biogeography-based optimization recurrent neural network
下载PDF
Link Budget and Enhanced Communication Distance for Ambient Internet of Things
5
作者 YANG Yibing LIU Ming +2 位作者 XU Rongtao WANG Gongpu GONG Wei 《ZTE Communications》 2024年第1期16-23,共8页
Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so t... Backscatter communications will play an important role in connecting everything for beyond 5G(B5G)and 6G systems.One open challenge for backscatter communications is that the signals suffer a round-trip path loss so that the communication distance is short.In this paper,we first calculate the communication distance upper bounds for both uplink and downlink by measuring the tag sensitivity and reflection coefficient.It is found that the activation voltage of the envelope detection diode of the downlink tag is the main factor limiting the back-scatter communication distance.Based on this analysis,we then propose to implement a low-noise amplifier(LNA)module before the envelope detection at the tag to enhance the incident signal strength.Our experimental results on the hardware platform show that our method can increase the downlink communication range by nearly 20 m. 展开更多
关键词 ambient IoT(AIoT) B5G backscatter communication link budget low-noise amplifier(LNA) Release 19 tag chip sensitivity upper bounds
下载PDF
Tasks-Oriented Joint Resource Allocation Scheme for the Internet of Vehicles with Sensing, Communication and Computing Integration 被引量:2
6
作者 Jiujiu Chen Caili Guo +1 位作者 Runtao Lin Chunyan Feng 《China Communications》 SCIE CSCD 2023年第3期27-42,共16页
With the development of artificial intelligence(AI)and 5G technology,the integration of sensing,communication and computing in the Internet of Vehicles(Io V)is becoming a trend.However,the large amount of data transmi... With the development of artificial intelligence(AI)and 5G technology,the integration of sensing,communication and computing in the Internet of Vehicles(Io V)is becoming a trend.However,the large amount of data transmission and the computing requirements of intelligent tasks lead to the complex resource management problems.In view of the above challenges,this paper proposes a tasks-oriented joint resource allocation scheme(TOJRAS)in the scenario of Io V.First,this paper proposes a system model with sensing,communication,and computing integration for multiple intelligent tasks with different requirements in the Io V.Secondly,joint resource allocation problems for real-time tasks and delay-tolerant tasks in the Io V are constructed respectively,including communication,computing and caching resources.Thirdly,a distributed deep Q-network(DDQN)based algorithm is proposed to solve the optimization problems,and the convergence and complexity of the algorithm are discussed.Finally,the experimental results based on real data sets verify the performance advantages of the proposed resource allocation scheme,compared to the existing ones.The exploration efficiency of our proposed DDQN-based algorithm is improved by at least about 5%,and our proposed resource allocation scheme improves the m AP performance by about 0.15 under resource constraints. 展开更多
关键词 IoV resource allocation tasks-oriented communications sensing communication and com-puting integration deep reinforcement learning
下载PDF
Beyond 5G Networks: Integration of Communication, Computing, Caching, and Control 被引量:2
7
作者 Musbahu Mohammed Adam Liqiang Zhao +1 位作者 Kezhi Wang Zhu Han 《China Communications》 SCIE CSCD 2023年第7期137-174,共38页
In recent years,the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks.Such challenges can be potentially overcome by integrating c... In recent years,the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks.Such challenges can be potentially overcome by integrating communication,computing,caching,and control(i4C)technologies.In this survey,we first give a snapshot of different aspects of the i4C,comprising background,motivation,leading technological enablers,potential applications,and use cases.Next,we describe different models of communication,computing,caching,and control(4C)to lay the foundation of the integration approach.We review current stateof-the-art research efforts related to the i4C,focusing on recent trends of both conventional and artificial intelligence(AI)-based integration approaches.We also highlight the need for intelligence in resources integration.Then,we discuss the integration of sensing and communication(ISAC)and classify the integration approaches into various classes.Finally,we propose open challenges and present future research directions for beyond 5G networks,such as 6G. 展开更多
关键词 4C 6G integration of communication computing caching and control i4C multi-access edge computing(MEC)
下载PDF
Distributed Weighted Data Aggregation Algorithm in End-to-Edge Communication Networks Based on Multi-armed Bandit 被引量:1
8
作者 Yifei ZOU Senmao QI +1 位作者 Cong'an XU Dongxiao YU 《计算机科学》 CSCD 北大核心 2023年第2期13-22,共10页
As a combination of edge computing and artificial intelligence,edge intelligence has become a promising technique and provided its users with a series of fast,precise,and customized services.In edge intelligence,when ... As a combination of edge computing and artificial intelligence,edge intelligence has become a promising technique and provided its users with a series of fast,precise,and customized services.In edge intelligence,when learning agents are deployed on the edge side,the data aggregation from the end side to the designated edge devices is an important research topic.Considering the various importance of end devices,this paper studies the weighted data aggregation problem in a single hop end-to-edge communication network.Firstly,to make sure all the end devices with various weights are fairly treated in data aggregation,a distributed end-to-edge cooperative scheme is proposed.Then,to handle the massive contention on the wireless channel caused by end devices,a multi-armed bandit(MAB)algorithm is designed to help the end devices find their most appropriate update rates.Diffe-rent from the traditional data aggregation works,combining the MAB enables our algorithm a higher efficiency in data aggregation.With a theoretical analysis,we show that the efficiency of our algorithm is asymptotically optimal.Comparative experiments with previous works are also conducted to show the strength of our algorithm. 展开更多
关键词 Weighted data aggregation End-to-edge communication Multi-armed bandit Edge intelligence
下载PDF
Generative Adversarial Networks Based Digital Twin Channel Modeling for Intelligent Communication Networks 被引量:1
9
作者 Yuxin Zhang Ruisi He +5 位作者 Bo Ai Mi Yang Ruifeng Chen Chenlong Wang Zhengyu Zhang Zhangdui Zhong 《China Communications》 SCIE CSCD 2023年第8期32-43,共12页
Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With D... Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking. 展开更多
关键词 digital twin channel modeling generative adversarial networks intelligent communication networking
下载PDF
Communication Resource-Efficient Vehicle Platooning Control With Various Spacing Policies 被引量:2
10
作者 Xiaohua Ge Qing-Long Han +1 位作者 Xian-Ming Zhang Derui Ding 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期362-376,共15页
Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical cha... Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results. 展开更多
关键词 Automated vehicles constant time headway spacing constant spacing cooperative adaptive cruise control event-triggered communication vehicle platooning
下载PDF
Distributed Nash Equilibrium Seeking Strategies Under Quantized Communication 被引量:1
11
作者 Maojiao Ye Qing-Long Han +2 位作者 Lei Ding Shengyuan Xu Guobiao Jia 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期103-112,共10页
This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achi... This paper is concerned with distributed Nash equi librium seeking strategies under quantized communication. In the proposed seeking strategy, a projection operator is synthesized with a gradient search method to achieve the optimization o players' objective functions while restricting their actions within required non-empty, convex and compact domains. In addition, a leader-following consensus protocol, in which quantized informa tion flows are utilized, is employed for information sharing among players. More specifically, logarithmic quantizers and uniform quantizers are investigated under both undirected and connected communication graphs and strongly connected digraphs, respec tively. Through Lyapunov stability analysis, it is shown that play ers' actions can be steered to a neighborhood of the Nash equilib rium with logarithmic and uniform quantizers, and the quanti fied convergence error depends on the parameter of the quan tizer for both undirected and directed cases. A numerical exam ple is given to verify the theoretical results. 展开更多
关键词 CONSENSUS distributed Nash equilibrium seeking projected gradient play quantized communication
下载PDF
Covert Communication in Integrated High Altitude Platform Station Terrestrial Networks
12
作者 Zeke Wu Kefeng Guo +1 位作者 Rui Liu Shibin Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期583-598,共16页
In recent years,Internet of Things(IoT)technology has emerged and gradually sprung up.As the needs of largescale IoT applications cannot be satisfied by the fifth generation(5G)network,wireless communication network n... In recent years,Internet of Things(IoT)technology has emerged and gradually sprung up.As the needs of largescale IoT applications cannot be satisfied by the fifth generation(5G)network,wireless communication network needs to be developed into the sixth generation(6G)network.However,with the increasingly prominent security problems of wireless communication networks such as 6G,covert communication has been recognized as one of the most promising solutions.Covert communication can realize the transmission of hidden information between both sides of communication to a certain extent,which makes the transmission content and transmission behavior challenging to be detected by noncooperative eavesdroppers.In addition,the integrated high altitude platform station(HAPS)terrestrial network is considered a promising development direction because of its flexibility and scalability.Based on the above facts,this article investigates the covert communication in an integrated HAPS terrestrial network,where a constant power auxiliary node is utilized to send artificial noise(AN)to realize the covert communication.Specifically,the covert constraint relationship between the transmitting and auxiliary nodes is derived.Moreover,the closed-form expressions of outage probability(OP)and effective covert communication rate are obtained.Finally,numerical results are provided to verify our analysis and reveal the impacts of critical parameters on the system performance. 展开更多
关键词 Covert communication the integrated HAPS terrestrial network constant power auxiliary node artificial noise(AN) effective covert communication rate
下载PDF
Performance Analysis of Three Spectrum Sensing Detection Techniques with Ambient Backscatter Communication in Cognitive Radio Networks
13
作者 Shayla Islam Anil Kumar Budati +2 位作者 Mohammad Kamrul Hasan Saoucene Mahfoudh Syed Bilal Hussian Shah 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期813-825,共13页
In wireless communications, the Ambient Backscatter Communication (AmBC) technique is a promisingapproach, detecting user presence accurately at low power levels. At low power or a low Signal-to-Noise Ratio(SNR), ther... In wireless communications, the Ambient Backscatter Communication (AmBC) technique is a promisingapproach, detecting user presence accurately at low power levels. At low power or a low Signal-to-Noise Ratio(SNR), there is no dedicated power for the users. Instead, they can transmit information by reflecting the ambientRadio Frequency (RF) signals in the spectrum. Therefore, it is essential to detect user presence in the spectrum forthe transmission of data without loss or without collision at a specific time. In this paper, the authors proposed anovel Spectrum Sensing (SS) detection technique in the Cognitive Radio (CR) spectrum, by developing the AmBC.Novel Matched Filter Detection with Inverse covariance (MFDI), Cyclostationary Feature Detection with Inversecovariance (CFDI) and Hybrid Filter Detection with Inverse covariance (HFDI) approaches are used with AmBCto detect the presence of users at low power levels. The performance of the three detection techniques is measuredusing the parameters of Probability of Detection (PD), Probability of False Alarms (Pfa), Probability of MissedDetection (Pmd), sensing time and throughput at low power or low SNR. The results show that there is a significantimprovement via the HFDI technique for all the parameters. 展开更多
关键词 Ambient backscatter communication cognitive radio MFDI CFDI HFDI
下载PDF
Environmental Information-Aided Electromagnetic Propagation Testbed for Maritime Communication
14
作者 Ting Zhou Yuzhen Wang +3 位作者 Bilian Xu Tianheng Xu Xiaoming Tao Honglin Hu 《China Communications》 SCIE CSCD 2023年第3期302-315,共14页
Maritime channel modeling can be affected by some key time-varying environmental factors.The ducting effect is one of the thorniest factors since it causes anomalous propagation enhancement and severe co-channel inter... Maritime channel modeling can be affected by some key time-varying environmental factors.The ducting effect is one of the thorniest factors since it causes anomalous propagation enhancement and severe co-channel interference.Moreover,the atmospheric attenuation is much more severe in the ocean environment,resulting in shorter coverage distance and more link outage.In this paper,we propose an environmental information-aided electromagnetic propagation testbed.It is based on complex refractivity estimation and improved parabolic equation propagation model,taking into account both ducting effect and atmospheric attenuation.A large-scale temporal and spatial propagation measurement was conducted with meteorological acquisition.We consider practical path loss and ducting conditions to verify the testbed feasibility in these long-distance radio links.The simulation results are in good agreement with the measured data,which further reveal the basic temporal and spatial distribution of ducting effect at 3.5 GHz band. 展开更多
关键词 broadband maritime communication maritime channel ducting effect electromagnetic propagation testbed propagation measurement atmospheric attenuation path loss
下载PDF
Coded Multicasting for Content Delivery over Predictable Time-Varying Satellite Communication Networks
15
作者 Fan Xu Shuo Shao +3 位作者 Meixia Tao Qin Huang Qifa Yan Xiaohu Tang 《China Communications》 SCIE CSCD 2023年第6期339-367,共29页
With the development of astronautic technology, communication satellites now have a tremendous gain in both quantity and quality, and have already shown their capability on multi-functional converged communication oth... With the development of astronautic technology, communication satellites now have a tremendous gain in both quantity and quality, and have already shown their capability on multi-functional converged communication other than telecommunication. Under this circumstance, increasing the transmission efficiency of satellite communication network becomes a top priority. In this paper, we focus on content delivery service on satellite networks, where each ground station may have prefetched some file fragments. We cast this problem into a coded caching framework so as to exploit the coded multicast gain for minimizing the satellite communication load. We first propose an optimization-based coded multicast scheme by considering the special property that the satellite network topology is predictable and timevariant. Then, a greedy based fast algorithm is proposed, which can tremendously reduce the computation complexity with a small loss in optimality. Simulation experiments conducted on two Walker constellation satellite networks show that our proposed coded multicast method can efficiently reduce the communication load of satellite networks. 展开更多
关键词 satellite communication content delivery coded multicast greedy algorithm
下载PDF
Machine Learning-Enabled Communication Approach for the Internet of Medical Things
16
作者 Rahim Khan Abdullah Ghani +3 位作者 Samia Allaoua Chelloug Mohammed Amin Aamir Saeed Jason Teo 《Computers, Materials & Continua》 SCIE EI 2023年第8期1569-1584,共16页
The Internet ofMedical Things(IoMT)is mainly concernedwith the efficient utilisation of wearable devices in the healthcare domain to manage various processes automatically,whereas machine learning approaches enable th... The Internet ofMedical Things(IoMT)is mainly concernedwith the efficient utilisation of wearable devices in the healthcare domain to manage various processes automatically,whereas machine learning approaches enable these smart systems to make informed decisions.Generally,broadcasting is used for the transmission of frames,whereas congestion,energy efficiency,and excessive load are among the common issues associated with existing approaches.In this paper,a machine learning-enabled shortest path identification scheme is presented to ensure reliable transmission of frames,especially with the minimum possible communication overheads in the IoMT network.For this purpose,the proposed scheme utilises a well-known technique,i.e.,Kruskal’s algorithm,to find an optimal path from source to destination wearable devices.Additionally,other evaluation metrics are used to find a reliable and shortest possible communication path between the two interested parties.Apart from that,every device is bound to hold a supplementary path,preferably a second optimised path,for situations where the current communication path is no longer available,either due to device failure or heavy traffic.Furthermore,the machine learning approach helps enable these devices to update their routing tables simultaneously,and an optimal path could be replaced if a better one is available.The proposed mechanism has been tested using a smart environment developed for the healthcare domain using IoMT networks.Simulation results show that the proposed machine learning-oriented approach performs better than existing approaches where the proposed scheme has achieved the minimum possible ratios,i.e.,17%and 23%,in terms of end to end delay and packet losses,respectively.Moreover,the proposed scheme has achieved an approximately 21%improvement in the average throughput compared to the existing schemes. 展开更多
关键词 Machine learning Internet of Medical Things healthcare load balancing communication
下载PDF
Joint optimization for secure ambient backscatter communication in NOMA-enabled IoT networks
17
作者 Wali Ullah Khan Furqan Jameel +2 位作者 Asim Ihsan Omer Waqar Manzoor Ahmed 《Digital Communications and Networks》 SCIE CSCD 2023年第1期264-269,共6页
Non-Orthogonal Multiple Access(NOMA)has emerged as a novel air interface technology for massive connectivity in Sixth-Generation(6G)era.The recent integration of NOMA in Backscatter Communication(BC)has triggered sign... Non-Orthogonal Multiple Access(NOMA)has emerged as a novel air interface technology for massive connectivity in Sixth-Generation(6G)era.The recent integration of NOMA in Backscatter Communication(BC)has triggered significant research interest due to its applications in low-powered Internet of Things(IoT)networks.However,the link security aspect of these networks has not been well investigated.This article provides a new optimization framework for improving the physical layer security of the NOMA ambient BC system.Our system model takes into account the simultaneous operation of NOMA IoT users and the Backscatter Node(BN)in the presence of multiple EavesDroppers(EDs).The EDs in the surrounding area can overhear the communication of Base Station(BS)and BN due to the wireless broadcast transmission.Thus,the chief aim is to enhance link security by optimizing the BN reflection coefficient and BS transmit power.To gauge the performance of the proposed scheme,we also present the suboptimal NOMA and conventional orthogonal multiple access as benchmark schemes.Monte Carlo simulation results demonstrate the superiority of the NOMA BC scheme over the pure NOMA scheme without the BC and conventional orthogonal multiple access schemes in terms of system secrecy rate. 展开更多
关键词 6G Non-orthogonal multiple access Ambient backscatter communication Internet-of-things Joint optimization Physical layer security
下载PDF
Intelligent Modulation Recognition of Communication Signal for Next-Generation 6G Networks
18
作者 Mrim M.Alnfiai 《Computers, Materials & Continua》 SCIE EI 2023年第3期5723-5740,共18页
In recent years,the need for a fast,efficient and a reliable wireless network has increased dramatically.Numerous 5G networks have already been tested while a few are in the early stages of deployment.In noncooperativ... In recent years,the need for a fast,efficient and a reliable wireless network has increased dramatically.Numerous 5G networks have already been tested while a few are in the early stages of deployment.In noncooperative communication scenarios,the recognition of digital signal modulations assists people in identifying the communication targets and ensures an effective management over them.The recent advancements in both Machine Learning(ML)and Deep Learning(DL)models demand the development of effective modulation recognition models with self-learning capability.In this background,the current research article designs aDeep Learning enabled Intelligent Modulation Recognition of Communication Signal(DLIMR-CS)technique for next-generation networks.The aim of the proposed DLIMR-CS technique is to classify different kinds of digitally-modulated signals.In addition,the fractal feature extraction process is appliedwith the help of the Sevcik Fractal Dimension(SFD)approach.Then,the extracted features are fed into the Deep Variational Autoencoder(DVAE)model for the classification of the modulated signals.In order to improve the classification performance of the DVAE model,the Tunicate Swarm Algorithm(TSA)is used to finetune the hyperparameters involved in DVAE model.A wide range of simulations was conducted to establish the enhanced performance of the proposed DLIMR-CS model.The experimental outcomes confirmed the superior recognition rate of the DLIMR-CS model over recent state-of-the-art methods under different evaluation parameters. 展开更多
关键词 6G networks communication signal modulation recognition deep learning machine learning parameter optimization
下载PDF
Sonar Image Target Detection for Underwater Communication System Based on Deep Neural Network
19
作者 Lilan Zou Bo Liang +2 位作者 Xu Cheng Shufa Li Cong Lin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2641-2659,共19页
Target signal acquisition and detection based on sonar images is a challenging task due to the complex underwater environment.In order to solve the problem that some semantic information in sonar images is lost and mo... Target signal acquisition and detection based on sonar images is a challenging task due to the complex underwater environment.In order to solve the problem that some semantic information in sonar images is lost and model detection performance is degraded due to the complex imaging environment,we proposed a more effective and robust target detection framework based on deep learning,which can make full use of the acoustic shadow information in the forward-looking sonar images to assist underwater target detection.Firstly,the weighted box fusion method is adopted to generate a fusion box by weighted fusion of prediction boxes with high confidence,so as to obtain accurate acoustic shadow boxes.Further,the acoustic shadow box is cut down to get the feature map containing the acoustic shadow information,and then the acoustic shadow feature map and the target information feature map are adaptively fused to make full use of the acoustic shadow feature information.In addition,we introduce a threshold processing module to improve the attention of the model to important feature information.Through the underwater sonar dataset provided by Pengcheng Laboratory,the proposed method improved the average accuracy by 3.14%at the IoU threshold of 0.7,which is better than the current traditional target detection model. 展开更多
关键词 Underwater communication intelligent sensor network target detection weighted frame fusion shadow information
下载PDF
Guest editorial: Network architectures and communication protocols for smart industrial IoT applications
20
作者 Fazlullah Khan Joel J.P.C.Rodrigues Mian Ahmad Jan 《Digital Communications and Networks》 SCIE CSCD 2023年第2期293-295,共3页
The rapid growth in hardware technologies and the fourth industrial revolution-Industry 4.0 have enabled the Internet of Things(IoT)to be smarter.One of the main drivers in Industry 4.0 is smart and secured Industrial... The rapid growth in hardware technologies and the fourth industrial revolution-Industry 4.0 have enabled the Internet of Things(IoT)to be smarter.One of the main drivers in Industry 4.0 is smart and secured Industrial IoT(IIoT)[1].The IIoT results from the widespread use of computers and the interconnectedness of machines.It has made software a crucial tool for almost every industry,from bakeries and arts to manufacturing facilities and healthcare systems[2].The IIoT devices can be mobile and geographically distributed over a long distance,which exposes them to network disturbances,Quality of Service(QoS)degradation,and security vulnerabilities.In addition,the IIoT is a complex network at a large scale,and there is a dire need for network architecture and protocol design to accommodate these diverse domains and competencies and handle the increasing levels of complexity.Therefore,in this special issue,we aim to focus on the challenges of network architectures and communication protocol design in the context of the smart industry.This special issue has attracted numerous high-quality research articles and has accepted fourteen research papers[3–16]. 展开更多
关键词 IOT network communication
下载PDF
上一页 1 2 226 下一页 到第
使用帮助 返回顶部