In a cyber-physical micro-grid system,wherein the control functions are executed through open communication channel,stability is an important issue owing to the factors related to the time-delay encountered in the dat...In a cyber-physical micro-grid system,wherein the control functions are executed through open communication channel,stability is an important issue owing to the factors related to the time-delay encountered in the data transfer.Transfer of feedback variable as discrete data packets in communication network invariably introduces inevitable time-delays in closed loop control systems.This delay,depending upon the network traffic condition,inherits a time-varying characteristic;nevertheless,it adversely impacts the system performance and stability.The load perturbations in a micro-grid system are considerably influenced by the presence of fluctuating power generators like wind and solar power.Since these non-conventional energy sources are integrated into the power grid through power electronic interface circuits that usually works at high switching frequency,noise signals are introduced into the micro-grid system and these signals gets super-imposed to the load variations.Based on this back ground,in this paper,the delay-dependent stability issue of networked micro-grid system combined with time-varying feedback loop delay and uncertain load perturbations is investigated,and a deeper insight has been presented to infer the impact of time-delay on the variations in the system frequency.The classical Lyapunov-Krasovskii method is employed to address the problem,and using a standard benchmark micro-grid system,and the proposed stability criterion is validated.展开更多
文摘In a cyber-physical micro-grid system,wherein the control functions are executed through open communication channel,stability is an important issue owing to the factors related to the time-delay encountered in the data transfer.Transfer of feedback variable as discrete data packets in communication network invariably introduces inevitable time-delays in closed loop control systems.This delay,depending upon the network traffic condition,inherits a time-varying characteristic;nevertheless,it adversely impacts the system performance and stability.The load perturbations in a micro-grid system are considerably influenced by the presence of fluctuating power generators like wind and solar power.Since these non-conventional energy sources are integrated into the power grid through power electronic interface circuits that usually works at high switching frequency,noise signals are introduced into the micro-grid system and these signals gets super-imposed to the load variations.Based on this back ground,in this paper,the delay-dependent stability issue of networked micro-grid system combined with time-varying feedback loop delay and uncertain load perturbations is investigated,and a deeper insight has been presented to infer the impact of time-delay on the variations in the system frequency.The classical Lyapunov-Krasovskii method is employed to address the problem,and using a standard benchmark micro-grid system,and the proposed stability criterion is validated.