The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We pro...The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency.展开更多
In a wireless sensor network[1],the operation of a node depends on the battery power it carries.Because of the environmental reasons,the node cannot replace the battery.In order to improve the life cycle of the networ...In a wireless sensor network[1],the operation of a node depends on the battery power it carries.Because of the environmental reasons,the node cannot replace the battery.In order to improve the life cycle of the network,energy becomes one of the key problems in the design of the wireless sensor network(WSN)routing protocol[2].This paper proposes a routing protocol ERGD based on the method of gradient descent that can minimizes the consumption of energy.Within the communication radius of the current node,the distance between the current node and the next hop node is assumed that can generate a projected energy at the distance from the current node to the base station(BS),this projected energy and the remaining energy of the next hop node is the key factor in finding the next hop node.The simulation results show that the proposed protocol effectively extends the life cycle of the network and improves the reliability and fault tolerance of the system.展开更多
基金This research was supported by Science and Technology Research Project of Education Department of Jiangxi Province,China(Nos.GJJ2206701,GJJ2206717).
文摘The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency.
文摘In a wireless sensor network[1],the operation of a node depends on the battery power it carries.Because of the environmental reasons,the node cannot replace the battery.In order to improve the life cycle of the network,energy becomes one of the key problems in the design of the wireless sensor network(WSN)routing protocol[2].This paper proposes a routing protocol ERGD based on the method of gradient descent that can minimizes the consumption of energy.Within the communication radius of the current node,the distance between the current node and the next hop node is assumed that can generate a projected energy at the distance from the current node to the base station(BS),this projected energy and the remaining energy of the next hop node is the key factor in finding the next hop node.The simulation results show that the proposed protocol effectively extends the life cycle of the network and improves the reliability and fault tolerance of the system.