In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ...In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ISAC, we propose a design scheme based on spectrum sharing, that is,to maximize the mutual information(MI) of radar sensing while ensuring certain communication rate and transmission power constraints. In the proposed scheme, three cases are considered for the scattering off the target due to the communication signals,as negligible signal, beneficial signal, and interference signal to radar sensing, respectively, thus requiring three power allocation schemes. However,the corresponding power allocation schemes are nonconvex and their closed-form solutions are unavailable as a consequence. Motivated by this, alternating optimization(AO), sequence convex programming(SCP) and Lagrange multiplier are individually combined for three suboptimal solutions corresponding with three power allocation schemes. By combining the three algorithms, we transform the non-convex problem which is difficult to deal with into a convex problem which is easy to solve and obtain the suboptimal solution of the corresponding optimization problem. Numerical results show that, compared with the allocation results of the existing algorithms, the proposed joint design algorithm significantly improves the radar performance.展开更多
A remote antenna unit (RAU) selection model is presented, and two kinds of handoffs, intra-cell handoff (HO) and inter-cell HO, are defined in distributed mobile communications systems (DAS). After that, an inte...A remote antenna unit (RAU) selection model is presented, and two kinds of handoffs, intra-cell handoff (HO) and inter-cell HO, are defined in distributed mobile communications systems (DAS). After that, an inter-cell HO model is proposed, in which the average power of the active set (AS) is used to predict the position of the mobile station (MS). The total power of the AS and the handoff set (HOS) are utilized to determine whether an inter-cell HO is necessary. Furthermore, the relationship between HO parameters and performance metrics is studied in detail based on RAU selection. Simulation results show that both the intra-cell HO and the inter-cell HO can achieve oerfect performance by aoprooriate settings of HO parameters.展开更多
Compared with the services in 3G, services in Beyond 3G (B3G) have some distinctive characteristics such as the packet data services being the majority, more service types, larger scale of services, higher peak transm...Compared with the services in 3G, services in Beyond 3G (B3G) have some distinctive characteristics such as the packet data services being the majority, more service types, larger scale of services, higher peak transmission rate, enlarged range of transmission rates, more spatial and temporal distribution differences, and more service transmission requests occurring in fast moving vehicles. In order to meet the requirements of B3G services, the B3G systems must have great improvement in network architecture, air interface scheme, radio resource allocation strategy, frequency bands, and Radio Frequency (RF) technology etc. Therefore, the research of the B3G systems should focus on the theory of generalized cellular communications networks, theory of the Multiple Input Multiple Output (MIMO) wireless transmission system, matching of radio resources to new-type air interfaces, new iterative detection and adaptive link methods, and new-type antenna and RF technologies.展开更多
Modern wireless communications gadgets demand multi-standard communications facilities with least overlap between different input radio channels. A sharp digital filter of extremely narrow transition-width with lower ...Modern wireless communications gadgets demand multi-standard communications facilities with least overlap between different input radio channels. A sharp digital filter of extremely narrow transition-width with lower stop band ripples offers alias-free switching among the preferred frequency bands. A computationally competent low pass filter (LPF) structure based on the multistage frequency response masking (FRM) approach is proposed for the design of sharp finite impulse response (FIR) filters which are suitable for wireless communications applications. In comparison of basic FRM with other existing multistage FRM structures, the proposed structure has a narrow transition bandwidth and higher stop band attenuation with significant reduction in terms of the number of computational steps. A design example is incorporated to demonstrate the efficiency of the proposed approach. Simulation results establish the improvement of the proposed scheme over other recently published design strategies.展开更多
With the low cost and low hardware complex considerations,cooperative systems are a tendency in the future communications.This work considers the secure cooperative communications systems.For a practical situation in ...With the low cost and low hardware complex considerations,cooperative systems are a tendency in the future communications.This work considers the secure cooperative communications systems.For a practical situation in the system,the scenario includes multiple source stations,multiple relay stations,multiple destination stations,and eavesdroppers.To analyze the optimal relay selection in the system,we begin with the performance analysis for a single source station and a single destination station.By applying two cooperative models,the amplify-andforward(AF) mode and decode-and-forward(DF)mode,the secrecy capacity is derived.Then,we apply the derived results to the considered environment to find the optimal relay assignment.By the way,the relay selection can be obtained by the exhaustive search algorithm.However,there are a lot of steps needed if the number of source stations is large.Hence,applying the characters of the cooperative modes in the relay selection,the pre-selection step is proposed with a mathematical derivation.It could be used for the practical situation without a long-time calculation.展开更多
A smartphone-based context-aware augmentative and alternative communication(AAC) was applied was in order to enhance the user's experience by providing simple, adaptive, and intuitive interfaces. Various potential...A smartphone-based context-aware augmentative and alternative communication(AAC) was applied was in order to enhance the user's experience by providing simple, adaptive, and intuitive interfaces. Various potential context-aware technologies and AAC usage scenarios were studied, and an efficient communication system was developed by combining smartphone's multimedia functions and its optimized sensor technologies. The experimental results show that context-awareness accuracy is achieved up to 97%.展开更多
The latest wireless broadband network standard is LTE (Long Term Evolution) which is developed by 3GPP (3rd Generation Partnership Project). It will enable mobile devices such as smart phones, tablets and laptops to a...The latest wireless broadband network standard is LTE (Long Term Evolution) which is developed by 3GPP (3rd Generation Partnership Project). It will enable mobile devices such as smart phones, tablets and laptops to access Internet at a very high speed along with lots of multimedia services. There are many issues that are yet to be solved due to dynamic complex nature of wireless systems, multimedia software applications and software requirements. Poor service quality, service disconnections due to mobility, seamless handover, handover interruption time and downward compatibility to other Radio Access Networks (RAN) are some of the key issues for the current LTE systems that are addressed very recently in the scientific literature. Formal method is one of the promising software engineering techniques that assure quality and perfection in software system models. Formal methods use mathematical language to explicitly specify system specifications and requirements that serve as initial grounds for further development and implementation. It efficiently handles all component connections and resource management parameters using discrete structures. Z Schema language is used to model static aspects of LTE communications system. All the schemas are being verified using Z/Eves toolset. The aim is to provide sound mathematical foundation for system validation and verification that eventually results in a more reliable, scalable and complete software system.展开更多
Propagation prediction is very important in the design of wirelesscommunication systems. A combined ray tracing and Finite-Difference Time-Domain (FDTD) method isimproved on modeling the indoor radio propagation by ap...Propagation prediction is very important in the design of wirelesscommunication systems. A combined ray tracing and Finite-Difference Time-Domain (FDTD) method isimproved on modeling the indoor radio propagation by applying Perfectly Matched Layer (PML)Absorbing Boundary Conditions (ABCs) to FDTD grid. Thus, more accurate propagation prediction can beobtained.展开更多
In terms of the carrier-to-interference-ratio, the performance of co-channel interference in cellular communications systems is studied. The approach is based on an improved analysis, which allows to take into account...In terms of the carrier-to-interference-ratio, the performance of co-channel interference in cellular communications systems is studied. The approach is based on an improved analysis, which allows to take into account some area in the desired sector may not be interfered by some co-channel sectors with exact geometrical analysis, instead of the entire sector interfered by some co-channel sectors. Other features, such as power control and the number of interferences are also included.展开更多
This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed a...This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed and implemented at 5.8 GHz with 64 RF Channels and 256 antenna elements.The 64-channel highly integrated active multibeam antenna system provides a verification platform for digital beamforming algorithm and massive MIMO channel estimation for next generation wireless communications.展开更多
This paper investigates limited-budget consensus design and analysis problems of general high-order multiagent systems with intermittent communications and switching topologies.The main contribution of this paper is t...This paper investigates limited-budget consensus design and analysis problems of general high-order multiagent systems with intermittent communications and switching topologies.The main contribution of this paper is that the tradeoff design between the energy consumption and the consensus performance can be realized while achieving leaderless or leaderfollowing consensus,under constraints of limited budgets and intermittent communications.Firstly,a new intermittent limitedbudget consensus control protocol with a practical trade-off design index is proposed,where the total budget of the whole multiagent system is limited.Then,leaderless limited-budget consensus design and analysis criteria are derived,in which the matrix variables of linear matrix inequalities are determined according to the total budget and the practical trade-off design parameters.Meanwhile,an explicit formulation of the consensus function is derived to describe the consensus state trajectory of the whole system.Moreover,a new two-stage transformation strategy is utilized for leader-following cases,by which the dynamics decomposition of leaderless and leader-following cases can be converted into a unified framework,and sufficient conditions of the leader-following limited-budget consensus design and analysis are determined via those of the leaderless cases.Finally,numerical simulations are given to illustrate theoretical results.展开更多
Intelligent reflecting surface(IRS)is a revolutionizing and promising technology to improve the high transmission rate of the wireless communication systems.Specifically,an IRS consists of a great amount of low-cost p...Intelligent reflecting surface(IRS)is a revolutionizing and promising technology to improve the high transmission rate of the wireless communication systems.Specifically,an IRS consists of a great amount of low-cost passive reflecting elements,which reflect the incident signals to the desired user by collaboratively using passive beamforming.This paper introduces IRSs into a device-to-device(D2D)underlying cellular system to enhance transmission rate performance of the D2D pairs.We formulate an optimization problem of maximizing the transmission rate of the D2D pairs while satisfying the minimum required rate of the cellular users.We address this problem by jointly optimizing the reuse indicator,received beamforming,power allocation,and phase shift matrices.Block coordinate descent(BCD)algorithm is adopted to decouple the original problem into four subproblems.Closed form solutions are obtained by solving the sub-problems of optimizing the received beamforming and power allocation.Then,Kuhn-Munkres(KM)algorithm and minimization-majorization(MM)algorithm are adopted to solve the sub-problems of optimizing the reuse indicator and phase shift matrices,respectively.Simulation results demonstrate that IRSs can effectively improve the transmission rate of the D2D pairs and our proposed distributed IRSs scheme outperforms the other benchmark schemes.展开更多
Satellite-terrestrial integrated(STI)systems represent the right solution to meet complex requirements of several services and sharing of the limited spectral resources between satellite systems and terrestrial ones m...Satellite-terrestrial integrated(STI)systems represent the right solution to meet complex requirements of several services and sharing of the limited spectral resources between satellite systems and terrestrial ones must be considered to optimize performance.Network architectures and traffic demand are different for the satellite component and for the terrestrial 5G/6G one,so that the requirements of spectral resources for satellite and terrestrial systems are expected to vary dynamically in a significant range.展开更多
ISSN (Online): 1755-9359; ISSN (Print): 1755-9340Published in 4 issues per year. Description One of the most dramatic technological developments in the era of information is the deployment of communication networks. T...ISSN (Online): 1755-9359; ISSN (Print): 1755-9340Published in 4 issues per year. Description One of the most dramatic technological developments in the era of information is the deployment of communication networks. This on-going revolution展开更多
Intelligent reflecting surface(IRS)is a promising technology for its capability of reflecting the incident signal towards the desired user.IRS can improve the efficiency of wireless communication systems.This paper in...Intelligent reflecting surface(IRS)is a promising technology for its capability of reflecting the incident signal towards the desired user.IRS can improve the efficiency of wireless communication systems.This paper introduces IRS into a device-to-device(D2D)communications system to improve the throughput of the D2D network.We adopt the block coordinate descent al-gorithm and semidefinite relaxation technique to optimize the beamforming vector,power allocation and phase shift matrix.Simulation results demonstrate that IRS is able to enhance the throughput of the D2D communications system,and the proposed algorithm significantly outper-forms the other benchmark algorithms.展开更多
Wireless communications have become an integral part of global convergence as global connectedness has gradually become dependent on its efficient deployment.The need for"more-broadband"techniques in relatio...Wireless communications have become an integral part of global convergence as global connectedness has gradually become dependent on its efficient deployment.The need for"more-broadband"techniques in relation to the ever increasing growth rate of the data hungry society now necessitates novel techniques for the high-speed data transmission.While advancements have been made in this regard,the projection of having an eventual Internet of everything (IoE) deployment will result in an unimaginable transmission data rate requirement as huge data traffic will be conveyed per time within the communications network,which will require a capacity upgrade of the existing infrastructure.Visible light communications (VLCs),as an integral part of optical wireless communications (OWCs),have been reviewed in this article,having the capacity to extend the achievable data rate requirement of the wireless communications network.The technologies,techniques,and best practices have been presented alongside technology integration for the seamless high capacity wireless broadband deployment.展开更多
With the emergence of the COVID-19 pandemic,the World Health Organization(WHO)has urged scientists and industrialists to exploremodern information and communication technology(ICT)as a means to reduce or even eliminat...With the emergence of the COVID-19 pandemic,the World Health Organization(WHO)has urged scientists and industrialists to exploremodern information and communication technology(ICT)as a means to reduce or even eliminate it.The World Health Organization recently reported that the virus may infect the organism through any organ in the living body,such as the respiratory,the immunity,the nervous,the digestive,or the cardiovascular system.Targeting the abovementioned goal,we envision an implanted nanosystem embedded in the intra living-body network.The main function of the nanosystem is either to perform diagnosis and mitigation of infectious diseases or to implement a targeted drug delivery system(i.e.,delivery of the therapeutic drug to the diseased tissue or targeted cell).The communication among the nanomachines is accomplished via communication-based molecular diffusion.The control/interconnection of the nanosystem is accomplished through the utilization of Internet of bio-nano things(IoBNT).The proposed nanosystem is designed to employ a coded relay nanomachine disciplined by the decode and forward(DF)principle to ensure reliable drug delivery to the targeted cell.Notably,both the sensitivity of the drug dose and the phenomenon of drug molecules loss before delivery to the target cell site in long-distance due to the molecules diffusion process are taken into account.In this paper,a coded relay NM with conventional coding techniques such as RS and Turbo codes is selected to achieve minimum bit error rate(BER)performance and high signal-to-noise ratio(SNR),while the detection process is based on maximum likelihood(ML)probability and minimum error probability(MEP).The performance analysis of the proposed scheme is evaluated in terms of channel capacity and bit error rate by varying system parameters such as relay position,number of released molecules,relay and receiver size.Analysis results are validated through simulation and demonstrate that the proposed scheme can significantly improve delivery performance of the desirable drugs in the molecular communication system.展开更多
Nowadays,the emerging paradigm of semantic communications seems to offer an attractive opportunity to improve the transmission reliability and efficiency in new generation communication systems.In particular,focusing ...Nowadays,the emerging paradigm of semantic communications seems to offer an attractive opportunity to improve the transmission reliability and efficiency in new generation communication systems.In particular,focusing on spectrum scarcity,expected to afflict the upcoming sixth generation(6G)networks,this paper analyses the semantic communications behavior in the context of a cell-dense scenario,in which users belonging to different small base station areas may be allocated on a same channel giving rise to a non-negligible interference that severely affects the communications reliability.In such a context,artificial intelligence methodologies are of paramount importance in order to speed up the switch from traditional communication to the novel semantic communication paradigm.As a consequence,a deep-convolution neural networks based encoder-decoder architecture has been exploited here in the definition of the proposed semantic communications framework.Finally,extensive numerical simulations have been performed to test the advantages of the proposed framework in different interfering scenarios and in comparison with different traditional or semantic alternatives.展开更多
Unmanned Aerial Vehicles(UAVs)will be essential to support mission-critical applications of Ultra Reliable Low Latency Communication(URLLC)in futuristic Sixth-Generation(6G)networks.However,several security vulnerabil...Unmanned Aerial Vehicles(UAVs)will be essential to support mission-critical applications of Ultra Reliable Low Latency Communication(URLLC)in futuristic Sixth-Generation(6G)networks.However,several security vulnerabilities and attacks have plagued previous generations of communication systems;thus,physical layer security,especially against eavesdroppers,is vital,especially for upcoming 6G networks.In this regard,UAVs have appeared as a winning candidate to mitigate security risks.In this paper,we leverage UAVs to propose two methods.The first method utilizes a UAV as Decode-and-Forward(DF)relay,whereas the second method utilizes a UAV as a jammer to mitigate eavesdropping attacks for URLLC between transmitter and receiver devices.Moreover,we present a low-complexity algorithm that outlines the two aforementioned methods of mitigating interception,i.e.increasing secrecy rate,and we compare them with the benchmark null method in which there is a direct communication link between transmitter and receiver without the UAV DF relay.Additionally,simulation results show the effectiveness of such methods by improving the secrecy rate and its dependency on UAV height,blocklength,decoding error probability and transmitter-receiver separation distance.Lastly,we recommend the best method to enhance the secrecy rate in the presence of an eavesdropper based on our simulations.展开更多
The rapid developing of the fourth generation(4G)wireless communications has aroused tremendous demands for high speed data transmission due to the dissemination of various types of the intelligent user terminals as w...The rapid developing of the fourth generation(4G)wireless communications has aroused tremendous demands for high speed data transmission due to the dissemination of various types of the intelligent user terminals as well as the wireless multi-media services.It is predicted that the network throughput will increase展开更多
文摘In this paper, we focus on the power allocation of Integrated Sensing and Communication(ISAC) with orthogonal frequency division multiplexing(OFDM) waveform. In order to improve the spectrum utilization efficiency in ISAC, we propose a design scheme based on spectrum sharing, that is,to maximize the mutual information(MI) of radar sensing while ensuring certain communication rate and transmission power constraints. In the proposed scheme, three cases are considered for the scattering off the target due to the communication signals,as negligible signal, beneficial signal, and interference signal to radar sensing, respectively, thus requiring three power allocation schemes. However,the corresponding power allocation schemes are nonconvex and their closed-form solutions are unavailable as a consequence. Motivated by this, alternating optimization(AO), sequence convex programming(SCP) and Lagrange multiplier are individually combined for three suboptimal solutions corresponding with three power allocation schemes. By combining the three algorithms, we transform the non-convex problem which is difficult to deal with into a convex problem which is easy to solve and obtain the suboptimal solution of the corresponding optimization problem. Numerical results show that, compared with the allocation results of the existing algorithms, the proposed joint design algorithm significantly improves the radar performance.
基金The National Natural Science Foundation of China(No60496311)
文摘A remote antenna unit (RAU) selection model is presented, and two kinds of handoffs, intra-cell handoff (HO) and inter-cell HO, are defined in distributed mobile communications systems (DAS). After that, an inter-cell HO model is proposed, in which the average power of the active set (AS) is used to predict the position of the mobile station (MS). The total power of the AS and the handoff set (HOS) are utilized to determine whether an inter-cell HO is necessary. Furthermore, the relationship between HO parameters and performance metrics is studied in detail based on RAU selection. Simulation results show that both the intra-cell HO and the inter-cell HO can achieve oerfect performance by aoprooriate settings of HO parameters.
基金Program ofNational Nature Science Foundation of China(No. 60496311) Project of National "863"Plan ofChina (No. 2005AA121052)
文摘Compared with the services in 3G, services in Beyond 3G (B3G) have some distinctive characteristics such as the packet data services being the majority, more service types, larger scale of services, higher peak transmission rate, enlarged range of transmission rates, more spatial and temporal distribution differences, and more service transmission requests occurring in fast moving vehicles. In order to meet the requirements of B3G services, the B3G systems must have great improvement in network architecture, air interface scheme, radio resource allocation strategy, frequency bands, and Radio Frequency (RF) technology etc. Therefore, the research of the B3G systems should focus on the theory of generalized cellular communications networks, theory of the Multiple Input Multiple Output (MIMO) wireless transmission system, matching of radio resources to new-type air interfaces, new iterative detection and adaptive link methods, and new-type antenna and RF technologies.
文摘Modern wireless communications gadgets demand multi-standard communications facilities with least overlap between different input radio channels. A sharp digital filter of extremely narrow transition-width with lower stop band ripples offers alias-free switching among the preferred frequency bands. A computationally competent low pass filter (LPF) structure based on the multistage frequency response masking (FRM) approach is proposed for the design of sharp finite impulse response (FIR) filters which are suitable for wireless communications applications. In comparison of basic FRM with other existing multistage FRM structures, the proposed structure has a narrow transition bandwidth and higher stop band attenuation with significant reduction in terms of the number of computational steps. A design example is incorporated to demonstrate the efficiency of the proposed approach. Simulation results establish the improvement of the proposed scheme over other recently published design strategies.
文摘With the low cost and low hardware complex considerations,cooperative systems are a tendency in the future communications.This work considers the secure cooperative communications systems.For a practical situation in the system,the scenario includes multiple source stations,multiple relay stations,multiple destination stations,and eavesdroppers.To analyze the optimal relay selection in the system,we begin with the performance analysis for a single source station and a single destination station.By applying two cooperative models,the amplify-andforward(AF) mode and decode-and-forward(DF)mode,the secrecy capacity is derived.Then,we apply the derived results to the considered environment to find the optimal relay assignment.By the way,the relay selection can be obtained by the exhaustive search algorithm.However,there are a lot of steps needed if the number of source stations is large.Hence,applying the characters of the cooperative modes in the relay selection,the pre-selection step is proposed with a mathematical derivation.It could be used for the practical situation without a long-time calculation.
基金Project supported by the Changwon National University(2013-2014),Korea
文摘A smartphone-based context-aware augmentative and alternative communication(AAC) was applied was in order to enhance the user's experience by providing simple, adaptive, and intuitive interfaces. Various potential context-aware technologies and AAC usage scenarios were studied, and an efficient communication system was developed by combining smartphone's multimedia functions and its optimized sensor technologies. The experimental results show that context-awareness accuracy is achieved up to 97%.
文摘The latest wireless broadband network standard is LTE (Long Term Evolution) which is developed by 3GPP (3rd Generation Partnership Project). It will enable mobile devices such as smart phones, tablets and laptops to access Internet at a very high speed along with lots of multimedia services. There are many issues that are yet to be solved due to dynamic complex nature of wireless systems, multimedia software applications and software requirements. Poor service quality, service disconnections due to mobility, seamless handover, handover interruption time and downward compatibility to other Radio Access Networks (RAN) are some of the key issues for the current LTE systems that are addressed very recently in the scientific literature. Formal method is one of the promising software engineering techniques that assure quality and perfection in software system models. Formal methods use mathematical language to explicitly specify system specifications and requirements that serve as initial grounds for further development and implementation. It efficiently handles all component connections and resource management parameters using discrete structures. Z Schema language is used to model static aspects of LTE communications system. All the schemas are being verified using Z/Eves toolset. The aim is to provide sound mathematical foundation for system validation and verification that eventually results in a more reliable, scalable and complete software system.
文摘Propagation prediction is very important in the design of wirelesscommunication systems. A combined ray tracing and Finite-Difference Time-Domain (FDTD) method isimproved on modeling the indoor radio propagation by applying Perfectly Matched Layer (PML)Absorbing Boundary Conditions (ABCs) to FDTD grid. Thus, more accurate propagation prediction can beobtained.
基金This workis supported by Applied Basic Research Programs Foundation of Chongqing Municipal Education Commission(050303) .
文摘In terms of the carrier-to-interference-ratio, the performance of co-channel interference in cellular communications systems is studied. The approach is based on an improved analysis, which allows to take into account some area in the desired sector may not be interfered by some co-channel sectors with exact geometrical analysis, instead of the entire sector interfered by some co-channel sectors. Other features, such as power control and the number of interferences are also included.
文摘This paper focuses on the design and implementation of an active multibeam antenna system for massive MIMO applications in 5G wireless communications.The highly integrated active multibeam antenna system is designed and implemented at 5.8 GHz with 64 RF Channels and 256 antenna elements.The 64-channel highly integrated active multibeam antenna system provides a verification platform for digital beamforming algorithm and massive MIMO channel estimation for next generation wireless communications.
基金supported by the National Natural Science Foundation of China(62003363,61703411)China Postdoctoral Science Foundation(271004)+1 种基金Science Foundation for Distinguished Youth of Shaanxi Province(2021JC-35)Youth Science Foundation of Shaanxi Province(2021JQ-375)。
文摘This paper investigates limited-budget consensus design and analysis problems of general high-order multiagent systems with intermittent communications and switching topologies.The main contribution of this paper is that the tradeoff design between the energy consumption and the consensus performance can be realized while achieving leaderless or leaderfollowing consensus,under constraints of limited budgets and intermittent communications.Firstly,a new intermittent limitedbudget consensus control protocol with a practical trade-off design index is proposed,where the total budget of the whole multiagent system is limited.Then,leaderless limited-budget consensus design and analysis criteria are derived,in which the matrix variables of linear matrix inequalities are determined according to the total budget and the practical trade-off design parameters.Meanwhile,an explicit formulation of the consensus function is derived to describe the consensus state trajectory of the whole system.Moreover,a new two-stage transformation strategy is utilized for leader-following cases,by which the dynamics decomposition of leaderless and leader-following cases can be converted into a unified framework,and sufficient conditions of the leader-following limited-budget consensus design and analysis are determined via those of the leaderless cases.Finally,numerical simulations are given to illustrate theoretical results.
基金supported in part by the Shenzhen Basic Research Program under Grant 20200811192821001 and JCYJ20190808122409660in part by the Guangdong Basic Research Program under Grant 2019A1515110358,2021A1515012097,2020ZDZX1037,2020ZDZX1021+1 种基金in part by the open research fund of National Mobile Communications Research LaboratorySoutheast University under Grant 202ID 16,the key Project of DEGP under Grant 2018KCXTD027.
文摘Intelligent reflecting surface(IRS)is a revolutionizing and promising technology to improve the high transmission rate of the wireless communication systems.Specifically,an IRS consists of a great amount of low-cost passive reflecting elements,which reflect the incident signals to the desired user by collaboratively using passive beamforming.This paper introduces IRSs into a device-to-device(D2D)underlying cellular system to enhance transmission rate performance of the D2D pairs.We formulate an optimization problem of maximizing the transmission rate of the D2D pairs while satisfying the minimum required rate of the cellular users.We address this problem by jointly optimizing the reuse indicator,received beamforming,power allocation,and phase shift matrices.Block coordinate descent(BCD)algorithm is adopted to decouple the original problem into four subproblems.Closed form solutions are obtained by solving the sub-problems of optimizing the received beamforming and power allocation.Then,Kuhn-Munkres(KM)algorithm and minimization-majorization(MM)algorithm are adopted to solve the sub-problems of optimizing the reuse indicator and phase shift matrices,respectively.Simulation results demonstrate that IRSs can effectively improve the transmission rate of the D2D pairs and our proposed distributed IRSs scheme outperforms the other benchmark schemes.
文摘Satellite-terrestrial integrated(STI)systems represent the right solution to meet complex requirements of several services and sharing of the limited spectral resources between satellite systems and terrestrial ones must be considered to optimize performance.Network architectures and traffic demand are different for the satellite component and for the terrestrial 5G/6G one,so that the requirements of spectral resources for satellite and terrestrial systems are expected to vary dynamically in a significant range.
文摘ISSN (Online): 1755-9359; ISSN (Print): 1755-9340Published in 4 issues per year. Description One of the most dramatic technological developments in the era of information is the deployment of communication networks. This on-going revolution
基金This work was supported in part by Shenzhen Overseas High-Level Talents Innovation and Entrepreneurship under Grant KQJSCX20180328093835762in part by Shenzhen Basic Research Program under Grant JCYJ20190808122409660+1 种基金Grant JCYJ20170412104656685,in part by Key Project of DEGP(2018KCXTD027)The associate editor coordinating the review of this paper and approving it for publication was J.Xu.
文摘Intelligent reflecting surface(IRS)is a promising technology for its capability of reflecting the incident signal towards the desired user.IRS can improve the efficiency of wireless communication systems.This paper introduces IRS into a device-to-device(D2D)communications system to improve the throughput of the D2D network.We adopt the block coordinate descent al-gorithm and semidefinite relaxation technique to optimize the beamforming vector,power allocation and phase shift matrix.Simulation results demonstrate that IRS is able to enhance the throughput of the D2D communications system,and the proposed algorithm significantly outper-forms the other benchmark algorithms.
基金supported by the Petroleum Technology Development Fund under the Grant No. P4567720076521527。
文摘Wireless communications have become an integral part of global convergence as global connectedness has gradually become dependent on its efficient deployment.The need for"more-broadband"techniques in relation to the ever increasing growth rate of the data hungry society now necessitates novel techniques for the high-speed data transmission.While advancements have been made in this regard,the projection of having an eventual Internet of everything (IoE) deployment will result in an unimaginable transmission data rate requirement as huge data traffic will be conveyed per time within the communications network,which will require a capacity upgrade of the existing infrastructure.Visible light communications (VLCs),as an integral part of optical wireless communications (OWCs),have been reviewed in this article,having the capacity to extend the achievable data rate requirement of the wireless communications network.The technologies,techniques,and best practices have been presented alongside technology integration for the seamless high capacity wireless broadband deployment.
基金supported by the Institute for Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.2019-0-01343,Training Key Talents in Industrial Convergence Security).
文摘With the emergence of the COVID-19 pandemic,the World Health Organization(WHO)has urged scientists and industrialists to exploremodern information and communication technology(ICT)as a means to reduce or even eliminate it.The World Health Organization recently reported that the virus may infect the organism through any organ in the living body,such as the respiratory,the immunity,the nervous,the digestive,or the cardiovascular system.Targeting the abovementioned goal,we envision an implanted nanosystem embedded in the intra living-body network.The main function of the nanosystem is either to perform diagnosis and mitigation of infectious diseases or to implement a targeted drug delivery system(i.e.,delivery of the therapeutic drug to the diseased tissue or targeted cell).The communication among the nanomachines is accomplished via communication-based molecular diffusion.The control/interconnection of the nanosystem is accomplished through the utilization of Internet of bio-nano things(IoBNT).The proposed nanosystem is designed to employ a coded relay nanomachine disciplined by the decode and forward(DF)principle to ensure reliable drug delivery to the targeted cell.Notably,both the sensitivity of the drug dose and the phenomenon of drug molecules loss before delivery to the target cell site in long-distance due to the molecules diffusion process are taken into account.In this paper,a coded relay NM with conventional coding techniques such as RS and Turbo codes is selected to achieve minimum bit error rate(BER)performance and high signal-to-noise ratio(SNR),while the detection process is based on maximum likelihood(ML)probability and minimum error probability(MEP).The performance analysis of the proposed scheme is evaluated in terms of channel capacity and bit error rate by varying system parameters such as relay position,number of released molecules,relay and receiver size.Analysis results are validated through simulation and demonstrate that the proposed scheme can significantly improve delivery performance of the desirable drugs in the molecular communication system.
基金This work was supported by the PNRR-Mission 4-Next Generation EU 1.3-contract PE0000001-research and innovation on future telecommunications systems and networks,to make Italy more smart.
文摘Nowadays,the emerging paradigm of semantic communications seems to offer an attractive opportunity to improve the transmission reliability and efficiency in new generation communication systems.In particular,focusing on spectrum scarcity,expected to afflict the upcoming sixth generation(6G)networks,this paper analyses the semantic communications behavior in the context of a cell-dense scenario,in which users belonging to different small base station areas may be allocated on a same channel giving rise to a non-negligible interference that severely affects the communications reliability.In such a context,artificial intelligence methodologies are of paramount importance in order to speed up the switch from traditional communication to the novel semantic communication paradigm.As a consequence,a deep-convolution neural networks based encoder-decoder architecture has been exploited here in the definition of the proposed semantic communications framework.Finally,extensive numerical simulations have been performed to test the advantages of the proposed framework in different interfering scenarios and in comparison with different traditional or semantic alternatives.
文摘Unmanned Aerial Vehicles(UAVs)will be essential to support mission-critical applications of Ultra Reliable Low Latency Communication(URLLC)in futuristic Sixth-Generation(6G)networks.However,several security vulnerabilities and attacks have plagued previous generations of communication systems;thus,physical layer security,especially against eavesdroppers,is vital,especially for upcoming 6G networks.In this regard,UAVs have appeared as a winning candidate to mitigate security risks.In this paper,we leverage UAVs to propose two methods.The first method utilizes a UAV as Decode-and-Forward(DF)relay,whereas the second method utilizes a UAV as a jammer to mitigate eavesdropping attacks for URLLC between transmitter and receiver devices.Moreover,we present a low-complexity algorithm that outlines the two aforementioned methods of mitigating interception,i.e.increasing secrecy rate,and we compare them with the benchmark null method in which there is a direct communication link between transmitter and receiver without the UAV DF relay.Additionally,simulation results show the effectiveness of such methods by improving the secrecy rate and its dependency on UAV height,blocklength,decoding error probability and transmitter-receiver separation distance.Lastly,we recommend the best method to enhance the secrecy rate in the presence of an eavesdropper based on our simulations.
文摘The rapid developing of the fourth generation(4G)wireless communications has aroused tremendous demands for high speed data transmission due to the dissemination of various types of the intelligent user terminals as well as the wireless multi-media services.It is predicted that the network throughput will increase