The Community Microwave Emission Model (CMEM) developed by the European Centre for Me-dium-Range Weather Forecasts (ECMWF) can provide a link between surface states and satellite observations and simulate the passive ...The Community Microwave Emission Model (CMEM) developed by the European Centre for Me-dium-Range Weather Forecasts (ECMWF) can provide a link between surface states and satellite observations and simulate the passive microwave brightness temperature of the surface at low frequencies (from 1 GHz to 20 GHz).This study evaluated the performance of the CMEM cou-pled with the Community Land Model (CLM) (CMEM-CLM) using C-band (6.9 GHz) microwave brightness temperatures from the Advanced Microwave Scanning Radiometer on Earth Observing System (AMSR-E) over East Asia.Preliminary results support the argument that the simulated brightness temperatures of CMEM-CLM from July 2005 to June 2010 are comparable to AMSR-E observational data.CMEM-CLM performed better for vertical polarization,for which the root mean square error was approximately 15 K,compared to over 30 K for horizontal polarization.An evaluation performed over seven sub-regions in China indicated that CMEM-CLM was able to capture the temporal evolution of C-band brightness temperatures well,and the best correlation with AMSR-E appeared over western Northwest China (over 0.9 for vertical polarization).However,larger biases were found over southern North China and the middle and lower reaches of the Yangtze River.展开更多
Snow cover on the Tibetan Plateau(TP)is closely related to regional and continental biological and hydrological processes.The vast snow cover,special climatic conditions,and sparse vegetative cover over the TP facilit...Snow cover on the Tibetan Plateau(TP)is closely related to regional and continental biological and hydrological processes.The vast snow cover,special climatic conditions,and sparse vegetative cover over the TP facilitate the occurrence of blowing snow,leading to substantial heterogeneities in the snow cover and great promotion in the moisture supply from the land surface to the overlying atmospheric boundary layer.However,blowing-snow processes are significantly misrepresented or even neglected in current models,which causes considerable uncertainties of numerical model simulations and leads to erroneous estimates of snow-related processes in mountainous terrain.We present in this paper a brief review of our work in the past 5 years to serve as a basis for further development and improvement of the land-surface model.These studies can be divided into three parts:detection of the problems,development of the land-surface model,and application of the coupled model over the TP(the logical framework is presented in Figure 1).The origin and advances in the development of a land-surface model with consideration of blowing-snow effects are described herein;and the importance of blowing-snow processes in the land-surface model,especially over the TP,is highlighted.We expect that the blowingsnow studies over the TP will play a key role in documenting and understanding the land-surface processes(LSPs)and the cryospheric changes over the TP.展开更多
陆面模式CLM(Community Land Model)是目前国际上发展较为完善并被广泛应用的陆面过程模式。本文使用中国科学院寒区旱区环境与工程研究所位于青藏高原东部的若尔盖高原湿地生态系统研究站的观测资料,对CLM3.0版本及CLM4.0版本在上述地...陆面模式CLM(Community Land Model)是目前国际上发展较为完善并被广泛应用的陆面过程模式。本文使用中国科学院寒区旱区环境与工程研究所位于青藏高原东部的若尔盖高原湿地生态系统研究站的观测资料,对CLM3.0版本及CLM4.0版本在上述地区的模拟性能进行了检验与对比。通过比较观测值与模拟值,验证了模式在高原季节性冻土地区的适用性,发现CLM4.0较CLM3.0在模拟结果上有了一定提高。CLM4.0加入了未冻水参数化方案,使模式可以模拟到冬季土壤冻结后存留的未冻水,显著增加了冻融期间土壤含水量的模拟,同时减小了土壤含冰量的模拟值。并因此增大了模拟的冻土热容量,减小了热导率,使冻融期间土壤温度的模拟也有了一定改善。但是模拟中也发现对于较深层土壤,温度模拟值在冻融期间较观测显著偏低。另外,在消融(冻结)过程阶段CLM4.0模拟的土壤含水量骤增(骤降)的时间均较观测提前。消融过程、冻结过程阶段模拟时间偏短,而完全冻结、完全消融阶段模拟时间偏长。因此CLM对于高原冻土地区的模拟仍是其需要重点改进的地方之一。展开更多
The accuracy of the simulation of carbon and water processes largely relies on the selection of atmospheric forcing datasets when driving land surface models(LSM).Particularly in high-altitude regions,choosing appropr...The accuracy of the simulation of carbon and water processes largely relies on the selection of atmospheric forcing datasets when driving land surface models(LSM).Particularly in high-altitude regions,choosing appropriate atmospheric forcing datasets can effectively reduce uncertainties in the LSM simulations.Therefore,this study conducted four offline LSM simulations over the Tibetan Plateau(TP)using the Community Land Model version 4.5(CLM4.5)driven by four state-of-the-art atmospheric forcing datasets.The performances of CRUNCEP(CLM4.5 model default)and three other reanalysis-based atmospheric forcing datasets(i.e.ITPCAS,GSWP3 and WFDEI)in simulating the net primary productivity(NPP)and actual evapotranspiration(ET)were evaluated based on in situ and gridded reference datasets.Compared with in situ observations,simulated results exhibited determination coefficients(R2)ranging from 0.58 to 0.84 and 0.59 to 0.87 for observed NPP and ET,respectively,among which GSWP3 and ITPCAS showed superior performance.At the plateau level,CRUNCEP-based simulations displayed the largest bias compared with the reference NPP and ET.GSWP3-based simulations demonstrated the best performance when comprehensively considering both the magnitudes and change trends of TP-averaged NPP and ET.The simulated ET increase over the TP during 1982-2010 based on ITPCAS was significantly greater than in the other three simulations and reference ET,suggesting that ITPCAS may not be appropriate for studying long-term ET changes over the TP.These results suggest that GSWP3 is recommended for driving CLM4.5 in conducting long-term carbon and water processes simulations over the TP.This study contributes to enhancing the accuracy of LSM in water-carbon simulations over alpine regions.展开更多
The capability of an improved Dynamic Global Vegetation Model (DGVM) in reproducing the impact of climate on the terrestrial ecosystem is evaluated. The new model incorporates the Community Land Model- DGVM (CLM3.0...The capability of an improved Dynamic Global Vegetation Model (DGVM) in reproducing the impact of climate on the terrestrial ecosystem is evaluated. The new model incorporates the Community Land Model- DGVM (CLM3.0-DGVM) with a submodel for temperate and boreal shrubs, as well as other revisions such as the "two-leaf" scheme for photosynthesis and the definition of fractional coverage of plant functional types (PFTs). Results show that the revised model may correctly reproduce the global distribution of temperate and boreal shrubs, and improves the model performance with more realistic distribution of di?erent vege- tation types. The revised model also correctly reproduces the zonal distributions of vegetation types. In reproducing the dependence of the vegetation distribution on climate conditions, the model shows that the dominant regions for trees, grasses, shrubs, and bare soil are clearly separated by a climate index derived from mean annual precipitation and temperature, in good agreement with the CLM4 surface data. The dominant plant functional type mapping to a two dimensional parameter space of mean annual temperature and precipitation also qualitatively agrees with the results from observations and theoretical ecology studies.展开更多
Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Mod...Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Model (DTVGM) into the Community Land Model (CLM 3.5), replacing the TOPMODEL-based method to simulate runoff in the arid and semi-arid regions of China. The coupled model was calibrated at five gauging stations for the period 1980-2005 and validated for the period 2006-2010. Then, future runoff (2010-2100) was simulated for different Representative Concentration Pathways (RCP) emission scenarios. After that, the spatial distributions of the future runoff for these scenarios were discussed, and the multi-scale fluctuation characteristics of the future annual runoff for the RCP scenarios were explored using the Ensemble Empirical Mode Decomposition (EEMD) analysis method. Finally, the decadal variabilities of the future annual runoff for the entire study area and the five catchments in it were investigated. The results showed that the future annual runoff had slowly decreasing trends for scenarios RCP 2.6 and RCP 8.5 during the period 2010-2100, whereas it had a non-monotonic trend for the RCP 4.5 scenario, with a slow increase after the 2050s. Additionally, the future annual runoff clearly varied over a decadal time scale, indicating that it had clear divisions between dry and wet periods. The longest dry period was approximately 15 years (2040-2055) for the RCP 2.6 scenario and 25 years (2045-2070) for the RCP 4.5 scenario. However, the RCP 8.5 scenario was predicted to have a long dry period starting from 2045. Under these scenarios, the water resources situation of the study area will be extremely severe. Therefore, adaptive water management measures addressing climate change should be adopted to proactively confront the risks of water resources.展开更多
The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simu...The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simulation is investigated by adopting a statistical post-processing procedure with the Bayesian model averaging (BMA) ensemble approach. The simulations by the community microwave emission model (CMEM) cou- pled with the community land model version 4.5 (CLM4.5) over China's Mainland are con- ducted by the 24 configurations from four vegetation opacity parameterizations (VOPs), three soil dielectric constant parameterizations (SDCPs), and two soil roughness param- eterizations (SRPs). Compared with the simple arithmetical averaging (SAA) method, the BMA reconstructions have a higher spatial correlation coefficient (larger than 0.99) than the C-band satellite observations of the advanced microwave scanning radiometer on the Earth observing system (AMSR-E) at the vertical polarization. Moreover, the BMA product performs the best among the ensemble members for all vegetation classes, with a mean root-mean-square difference (RMSD) of 4 K and a temporal correlation coefficient of 0.64.展开更多
Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This stud...Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research.展开更多
The three-river source region plays an important role on China’s ecological security and Asia’s water supply. Historically, the region has experienced severe ecological degradation due to climate change and human ac...The three-river source region plays an important role on China’s ecological security and Asia’s water supply. Historically, the region has experienced severe ecological degradation due to climate change and human activities. Reasonable simulations of the energy and water cycles are essential to predict the responses of land surface processes to future climate change. Current land surface models involve empirical functions that are associated with many parameters. These parameter uncertainties will largely affect the simulation when applied to a new domain. The Community Land Model(CLM) is a widely used land surface model, and version 5.0 is the newest version. Compared to the prior version CLM4.5, CLM5.0 has largely updated plant hydraulic and stomatal conductance schemes. How these changes affect parameter sensitivities is unknown. In our work, we tested 17 key parameters in CLM4.5 and 19 parameters in CLM5.0 at two eddy flux sites in the three-river source region: the Maqu and Maduo sites. We adopted the simplest one-at-a-time changes on each parameter and quantified their sensitivities by the parameter effect(PE).We found that the Maqu site was more sensitive to vegetation parameters, while the Maduo site was more sensitive to the initial soil water content in both CLM4.5 and CLM5.0. This is because Maduo grid cell has wetland that does not respond to vegetation parameters in CLM, which may not reflect the reality. Further model development on wetland vegetation parameterization is important. Our validation on the default simulation showed CLM5.0 did not always improve the simulations. The largest difference between CLM5.0 and CLM4.5 was that soil moisture(SM) showed a much stronger decrease in response to a higher leaf area index(LAI) in CLM5.0 than in CLM4.5, suggesting that SM is more sensitive to vegetation changes in CLM5.0.展开更多
利用第二次全国土壤调查土壤质地数据(SNSS)和中国区域陆地覆盖资料(CLCV)将陆面过程模式CLM3.5(Community Land Model version 3.5)中基于联合国粮食农业组织发展的土壤质地数据(FAO)和MODIS卫星反演的陆地覆盖数据(MODIS)...利用第二次全国土壤调查土壤质地数据(SNSS)和中国区域陆地覆盖资料(CLCV)将陆面过程模式CLM3.5(Community Land Model version 3.5)中基于联合国粮食农业组织发展的土壤质地数据(FAO)和MODIS卫星反演的陆地覆盖数据(MODIS)进行了替换,使用中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)大气强迫场资料,分别驱动基于同时改进土壤质地和陆地覆盖数据的CLM3.5(CLM-new)、基于只改进陆地覆盖数据的CLM3.5(CLM-clcv)、基于只改进土壤质地数据的CLM3.5(CLM-snss)和基于原始下垫面数据的CLM3.5(CLM-ctl),对内蒙古地区2011~2013年土壤湿度的时空变化进行模拟试验,研究下垫面改进对CLM3.5模拟土壤湿度的影响。将四组模拟结果与46个土壤水分站点观测数据进行对比分析,结果表明:相对于控制试验,CLM-clcv、CLM-snss和CLM-new都能不同程度地改进土壤湿度模拟,其中CLM-clcv主要在呼伦贝尔改进明显,CLM-snss则在除呼伦贝尔以外的大部地区改进显著,CLM-ctl模拟的土壤湿度在各层上均系统性偏大,而CLM-new模拟土壤湿度最好地反映出内蒙古地区观测的土壤湿度的时空变化特征,显著改善了土壤湿度的模拟,体现在与观测值有着更高的相关系数和更小的平均偏差与均方根误差。展开更多
利用NOAH(The Community Noah Land Surface Model)、SHAW(Simultaneous Heat and Water)和CLM(Community Land Model)3个不同的陆面过程模式及兰州大学(Semi-Arid Climate Observatory and Laboratory,SACOL)2007年的观测资料,对黄土...利用NOAH(The Community Noah Land Surface Model)、SHAW(Simultaneous Heat and Water)和CLM(Community Land Model)3个不同的陆面过程模式及兰州大学(Semi-Arid Climate Observatory and Laboratory,SACOL)2007年的观测资料,对黄土高原半干旱区的陆面过程进行了模拟研究。通过与观测值间的对比,考察不同陆面过程模式在半干旱区的适用性。研究结果表明:3个模式在半干旱区的模拟性能有较大差异。其中,CLM模式模拟的20 cm以上的浅层土壤温度最优,SHAW模式模拟的深层土壤温度最优;SHAW模式模拟的土壤含水量与观测值最为接近,而NOAH和CLM模式模拟值有较大偏差;3个模式均能较好地模拟地表反射辐射,其中SHAW模式模拟值与观测值的偏差最小;对地表长波辐射的模拟,CLM模式的模拟最优;3个模式均能较好地反映感热、潜热通量的变化趋势,其中CLM模式对感热的模拟性能优于其他两个模式,在有降水发生后的湿润条件下,CLM模式对潜热的模拟性能最优,而无降水的干燥条件下,CLM模式的模拟偏差最大,NOAH模式对冬季潜热的模拟最优。总体而言,CLM模式能够更好地再现半干旱区地气之间的相互作用,但模式对土壤含水量及干燥条件下的潜热通量的模拟较差,模式对半干旱区陆气间的水文过程还有待进一步的研究和改进。展开更多
利用CLM(Common Land Model)模式对我国内蒙古奈曼旗农牧交错带沙漠和农田两种不同典型下垫面的陆面过程进行了数值模拟试验,并与外场试验观测结果进行了对比分析。结果表明:无论是沙漠还是农田试验,CLM都能够较好地模拟其辐射通量和土...利用CLM(Common Land Model)模式对我国内蒙古奈曼旗农牧交错带沙漠和农田两种不同典型下垫面的陆面过程进行了数值模拟试验,并与外场试验观测结果进行了对比分析。结果表明:无论是沙漠还是农田试验,CLM都能够较好地模拟其辐射通量和土壤中的热传导特征,CLM的模拟结果能够真实地再现试验期间土壤热传导过程对天气过程的响应。相比而言,模式对沙漠地区长波辐射通量和干燥时期短波辐射通量的模拟结果好于农田,其原因可能是因为农田下垫面植被及土壤特征较沙漠复杂,有着很大的不确定性,造成了农田地表反照率和温度模拟的偏差。而对农田热传导的模拟结果好于沙漠,反映了CLM对含水量较大、持水力较强的农田下垫面的热传导模拟能力较好,而对含水量较小、持水力较弱的沙漠下垫面的热传导模拟能力相对较差。展开更多
本文基于中国1:100万植被图、马里兰大学AVHRR森林覆盖资料和中国753个气象站点40年的降水气温资料,发展了一套用于气候模拟的中国陆面覆盖资料(Chinese land cover derived fromvegetation map,简称CLCV)。该套资料与CLM(Community Lan...本文基于中国1:100万植被图、马里兰大学AVHRR森林覆盖资料和中国753个气象站点40年的降水气温资料,发展了一套用于气候模拟的中国陆面覆盖资料(Chinese land cover derived fromvegetation map,简称CLCV)。该套资料与CLM(Community Land Model)原来所用的MODIS(Moderate Resolution I maging Spectro-radiometer)陆面覆盖资料相比有较大不同:其中裸土比例减少了14.5%,森林、灌木、草原和农作物比例分别增加了3.3%、4.8%、4.4%和0.3%,冰川、湖泊和湿地比例分别增加了0.4%、0.8%和0.6%。将CLCV和MO-DIS资料分别与全国土地资源概查汇总结果分省统计资料和基于中国1km土地利用图的土地利用资料比较表明,CLCV与两者较为接近。最后,利用CLM模式分别采用CLCV与MODIS陆面覆盖资料在中国区域内进行数值模拟,结果显示,使用CLCV资料所模拟的蒸散增加了约7.7mm/a;地表反照率、感热和径流分别减小了约0.7%、0.3W/m2和7.6mm/a;与MODIS卫星反演地表反照率和GRDC(Global Runoff Data Centre)径流资料比较表明,利用CLCV资料所模拟的地表反照率有一定改进,并能基本模拟出径流分布趋势。展开更多
基于2001年和2010年中分辨率成像光谱仪MODIS(MODerate-resolution Imaging Spectroradiometer)土地覆盖数据,利用公共陆面模式(Community Land Model, CLM)模拟真实的土地利用/覆盖变化(Land Use/Cover Change, LUCC)对地表能量平衡和...基于2001年和2010年中分辨率成像光谱仪MODIS(MODerate-resolution Imaging Spectroradiometer)土地覆盖数据,利用公共陆面模式(Community Land Model, CLM)模拟真实的土地利用/覆盖变化(Land Use/Cover Change, LUCC)对地表能量平衡和水分循环过程的影响。研究表明:1)在2001~2010年,中国LUCC最明显的区域位于干旱半干旱区过渡带、半干旱半湿润区过渡带和南方地区;中国区域荒漠减少0.92%,草地减少0.01%,农田增加0.77%,森林增加2.86%,植被覆盖度整体增加。2)在2001年和2010年两种土地利用/覆盖背景下,LUCC使大部分地区感热通量增加,植被蒸腾、蒸发潜热通量增加,土壤表面蒸发潜热通量减小。3)LUCC使大部分地区地表径流减小;中国西北东部、华北和东北地区土壤湿度减小,其他地区土壤湿度增加,仅干旱半干旱过渡带上的土壤湿度发生了显著变化。4)当典型过渡带区域由荒漠变为草地后,感热通量增加1.11 W m-2,潜热通量增加0.14 W m-2;冠层蒸腾和蒸发分别增加0.039 mm d-1、0.009 mm d-1。土壤湿度平均减小0.01 m3 m-3,且随深度增加变干更明显,这是由于根系吸收了较多深层土壤水分,以满足植被显著增加的蒸腾而产生的结果。当草地变为灌木时,其能量通量和水分循环的变化与上述结果类似。展开更多
基金supported by the National Basic Research Program of China under Grants 2010CB951101 and 2010CB951001the National Natural Science Foundation of China under Grant 41075062
文摘The Community Microwave Emission Model (CMEM) developed by the European Centre for Me-dium-Range Weather Forecasts (ECMWF) can provide a link between surface states and satellite observations and simulate the passive microwave brightness temperature of the surface at low frequencies (from 1 GHz to 20 GHz).This study evaluated the performance of the CMEM cou-pled with the Community Land Model (CLM) (CMEM-CLM) using C-band (6.9 GHz) microwave brightness temperatures from the Advanced Microwave Scanning Radiometer on Earth Observing System (AMSR-E) over East Asia.Preliminary results support the argument that the simulated brightness temperatures of CMEM-CLM from July 2005 to June 2010 are comparable to AMSR-E observational data.CMEM-CLM performed better for vertical polarization,for which the root mean square error was approximately 15 K,compared to over 30 K for horizontal polarization.An evaluation performed over seven sub-regions in China indicated that CMEM-CLM was able to capture the temporal evolution of C-band brightness temperatures well,and the best correlation with AMSR-E appeared over western Northwest China (over 0.9 for vertical polarization).However,larger biases were found over southern North China and the middle and lower reaches of the Yangtze River.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA2006010101)the National Natural Science Foundation of China (41905012, 91837208 and 41661144043)+2 种基金the National Key Research and Development Program of China (2018YFC1505701)the Opening Fund of Key Laboratory for Land Surface Process and Climate Change in Cold and Arid Regions, the Chinese Academy of Sciences (LPCC2018002)the China Postdoctoral Science Foundation (2018M641489)
文摘Snow cover on the Tibetan Plateau(TP)is closely related to regional and continental biological and hydrological processes.The vast snow cover,special climatic conditions,and sparse vegetative cover over the TP facilitate the occurrence of blowing snow,leading to substantial heterogeneities in the snow cover and great promotion in the moisture supply from the land surface to the overlying atmospheric boundary layer.However,blowing-snow processes are significantly misrepresented or even neglected in current models,which causes considerable uncertainties of numerical model simulations and leads to erroneous estimates of snow-related processes in mountainous terrain.We present in this paper a brief review of our work in the past 5 years to serve as a basis for further development and improvement of the land-surface model.These studies can be divided into three parts:detection of the problems,development of the land-surface model,and application of the coupled model over the TP(the logical framework is presented in Figure 1).The origin and advances in the development of a land-surface model with consideration of blowing-snow effects are described herein;and the importance of blowing-snow processes in the land-surface model,especially over the TP,is highlighted.We expect that the blowingsnow studies over the TP will play a key role in documenting and understanding the land-surface processes(LSPs)and the cryospheric changes over the TP.
文摘陆面模式CLM(Community Land Model)是目前国际上发展较为完善并被广泛应用的陆面过程模式。本文使用中国科学院寒区旱区环境与工程研究所位于青藏高原东部的若尔盖高原湿地生态系统研究站的观测资料,对CLM3.0版本及CLM4.0版本在上述地区的模拟性能进行了检验与对比。通过比较观测值与模拟值,验证了模式在高原季节性冻土地区的适用性,发现CLM4.0较CLM3.0在模拟结果上有了一定提高。CLM4.0加入了未冻水参数化方案,使模式可以模拟到冬季土壤冻结后存留的未冻水,显著增加了冻融期间土壤含水量的模拟,同时减小了土壤含冰量的模拟值。并因此增大了模拟的冻土热容量,减小了热导率,使冻融期间土壤温度的模拟也有了一定改善。但是模拟中也发现对于较深层土壤,温度模拟值在冻融期间较观测显著偏低。另外,在消融(冻结)过程阶段CLM4.0模拟的土壤含水量骤增(骤降)的时间均较观测提前。消融过程、冻结过程阶段模拟时间偏短,而完全冻结、完全消融阶段模拟时间偏长。因此CLM对于高原冻土地区的模拟仍是其需要重点改进的地方之一。
基金supported by the National Key Research and Development Program of China(2022YFC3201702)the National Natural Science Foundation of China(42201146,U2240226)+1 种基金the Science and Technology Project of Sichuan Province(2022NSFSC1001)Fundamental Research Funds for The Central Universities(YJ2021133).
文摘The accuracy of the simulation of carbon and water processes largely relies on the selection of atmospheric forcing datasets when driving land surface models(LSM).Particularly in high-altitude regions,choosing appropriate atmospheric forcing datasets can effectively reduce uncertainties in the LSM simulations.Therefore,this study conducted four offline LSM simulations over the Tibetan Plateau(TP)using the Community Land Model version 4.5(CLM4.5)driven by four state-of-the-art atmospheric forcing datasets.The performances of CRUNCEP(CLM4.5 model default)and three other reanalysis-based atmospheric forcing datasets(i.e.ITPCAS,GSWP3 and WFDEI)in simulating the net primary productivity(NPP)and actual evapotranspiration(ET)were evaluated based on in situ and gridded reference datasets.Compared with in situ observations,simulated results exhibited determination coefficients(R2)ranging from 0.58 to 0.84 and 0.59 to 0.87 for observed NPP and ET,respectively,among which GSWP3 and ITPCAS showed superior performance.At the plateau level,CRUNCEP-based simulations displayed the largest bias compared with the reference NPP and ET.GSWP3-based simulations demonstrated the best performance when comprehensively considering both the magnitudes and change trends of TP-averaged NPP and ET.The simulated ET increase over the TP during 1982-2010 based on ITPCAS was significantly greater than in the other three simulations and reference ET,suggesting that ITPCAS may not be appropriate for studying long-term ET changes over the TP.These results suggest that GSWP3 is recommended for driving CLM4.5 in conducting long-term carbon and water processes simulations over the TP.This study contributes to enhancing the accuracy of LSM in water-carbon simulations over alpine regions.
基金supported by Chinese Academy of Sciences (KZCX2-YW-219, 100 Tal-ents Program)Ministry of Science and Technology of China (2009CB421406)
文摘The capability of an improved Dynamic Global Vegetation Model (DGVM) in reproducing the impact of climate on the terrestrial ecosystem is evaluated. The new model incorporates the Community Land Model- DGVM (CLM3.0-DGVM) with a submodel for temperate and boreal shrubs, as well as other revisions such as the "two-leaf" scheme for photosynthesis and the definition of fractional coverage of plant functional types (PFTs). Results show that the revised model may correctly reproduce the global distribution of temperate and boreal shrubs, and improves the model performance with more realistic distribution of di?erent vege- tation types. The revised model also correctly reproduces the zonal distributions of vegetation types. In reproducing the dependence of the vegetation distribution on climate conditions, the model shows that the dominant regions for trees, grasses, shrubs, and bare soil are clearly separated by a climate index derived from mean annual precipitation and temperature, in good agreement with the CLM4 surface data. The dominant plant functional type mapping to a two dimensional parameter space of mean annual temperature and precipitation also qualitatively agrees with the results from observations and theoretical ecology studies.
基金supported by the National Basic Research Program of China(2012CB956204)We acknowledge the modeling groups for providing the data for analysis,the Program for Climate Model Diagnosis and Intercomparison(PCMDI)the World Climate Research Programme’s(WCRP’s)Coupled Model Intercomparison Project for collecting and archiving the model output and organizing the data analysis
文摘Runoff is a major component of the water cycle, and its multi-scale fluctuations are important to water resources management across arid and semi-arid regions. This paper coupled the Distributed Time Variant Gain Model (DTVGM) into the Community Land Model (CLM 3.5), replacing the TOPMODEL-based method to simulate runoff in the arid and semi-arid regions of China. The coupled model was calibrated at five gauging stations for the period 1980-2005 and validated for the period 2006-2010. Then, future runoff (2010-2100) was simulated for different Representative Concentration Pathways (RCP) emission scenarios. After that, the spatial distributions of the future runoff for these scenarios were discussed, and the multi-scale fluctuation characteristics of the future annual runoff for the RCP scenarios were explored using the Ensemble Empirical Mode Decomposition (EEMD) analysis method. Finally, the decadal variabilities of the future annual runoff for the entire study area and the five catchments in it were investigated. The results showed that the future annual runoff had slowly decreasing trends for scenarios RCP 2.6 and RCP 8.5 during the period 2010-2100, whereas it had a non-monotonic trend for the RCP 4.5 scenario, with a slow increase after the 2050s. Additionally, the future annual runoff clearly varied over a decadal time scale, indicating that it had clear divisions between dry and wet periods. The longest dry period was approximately 15 years (2040-2055) for the RCP 2.6 scenario and 25 years (2045-2070) for the RCP 4.5 scenario. However, the RCP 8.5 scenario was predicted to have a long dry period starting from 2045. Under these scenarios, the water resources situation of the study area will be extremely severe. Therefore, adaptive water management measures addressing climate change should be adopted to proactively confront the risks of water resources.
基金Project supported by the China Special Fund for Meteorological Research in the Public Interest(No.GYHY201306045)the National Natural Science Foundation of China(Nos.41305066 and41575096)
文摘The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simulation is investigated by adopting a statistical post-processing procedure with the Bayesian model averaging (BMA) ensemble approach. The simulations by the community microwave emission model (CMEM) cou- pled with the community land model version 4.5 (CLM4.5) over China's Mainland are con- ducted by the 24 configurations from four vegetation opacity parameterizations (VOPs), three soil dielectric constant parameterizations (SDCPs), and two soil roughness param- eterizations (SRPs). Compared with the simple arithmetical averaging (SAA) method, the BMA reconstructions have a higher spatial correlation coefficient (larger than 0.99) than the C-band satellite observations of the advanced microwave scanning radiometer on the Earth observing system (AMSR-E) at the vertical polarization. Moreover, the BMA product performs the best among the ensemble members for all vegetation classes, with a mean root-mean-square difference (RMSD) of 4 K and a temporal correlation coefficient of 0.64.
基金funded by the National Natural Science Foundation of China(42371022,42030501,41877148).
文摘Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA20050102)National Natural Science Foundation of China(41975135 and 41975130)。
文摘The three-river source region plays an important role on China’s ecological security and Asia’s water supply. Historically, the region has experienced severe ecological degradation due to climate change and human activities. Reasonable simulations of the energy and water cycles are essential to predict the responses of land surface processes to future climate change. Current land surface models involve empirical functions that are associated with many parameters. These parameter uncertainties will largely affect the simulation when applied to a new domain. The Community Land Model(CLM) is a widely used land surface model, and version 5.0 is the newest version. Compared to the prior version CLM4.5, CLM5.0 has largely updated plant hydraulic and stomatal conductance schemes. How these changes affect parameter sensitivities is unknown. In our work, we tested 17 key parameters in CLM4.5 and 19 parameters in CLM5.0 at two eddy flux sites in the three-river source region: the Maqu and Maduo sites. We adopted the simplest one-at-a-time changes on each parameter and quantified their sensitivities by the parameter effect(PE).We found that the Maqu site was more sensitive to vegetation parameters, while the Maduo site was more sensitive to the initial soil water content in both CLM4.5 and CLM5.0. This is because Maduo grid cell has wetland that does not respond to vegetation parameters in CLM, which may not reflect the reality. Further model development on wetland vegetation parameterization is important. Our validation on the default simulation showed CLM5.0 did not always improve the simulations. The largest difference between CLM5.0 and CLM4.5 was that soil moisture(SM) showed a much stronger decrease in response to a higher leaf area index(LAI) in CLM5.0 than in CLM4.5, suggesting that SM is more sensitive to vegetation changes in CLM5.0.
文摘利用第二次全国土壤调查土壤质地数据(SNSS)和中国区域陆地覆盖资料(CLCV)将陆面过程模式CLM3.5(Community Land Model version 3.5)中基于联合国粮食农业组织发展的土壤质地数据(FAO)和MODIS卫星反演的陆地覆盖数据(MODIS)进行了替换,使用中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)大气强迫场资料,分别驱动基于同时改进土壤质地和陆地覆盖数据的CLM3.5(CLM-new)、基于只改进陆地覆盖数据的CLM3.5(CLM-clcv)、基于只改进土壤质地数据的CLM3.5(CLM-snss)和基于原始下垫面数据的CLM3.5(CLM-ctl),对内蒙古地区2011~2013年土壤湿度的时空变化进行模拟试验,研究下垫面改进对CLM3.5模拟土壤湿度的影响。将四组模拟结果与46个土壤水分站点观测数据进行对比分析,结果表明:相对于控制试验,CLM-clcv、CLM-snss和CLM-new都能不同程度地改进土壤湿度模拟,其中CLM-clcv主要在呼伦贝尔改进明显,CLM-snss则在除呼伦贝尔以外的大部地区改进显著,CLM-ctl模拟的土壤湿度在各层上均系统性偏大,而CLM-new模拟土壤湿度最好地反映出内蒙古地区观测的土壤湿度的时空变化特征,显著改善了土壤湿度的模拟,体现在与观测值有着更高的相关系数和更小的平均偏差与均方根误差。
文摘利用NOAH(The Community Noah Land Surface Model)、SHAW(Simultaneous Heat and Water)和CLM(Community Land Model)3个不同的陆面过程模式及兰州大学(Semi-Arid Climate Observatory and Laboratory,SACOL)2007年的观测资料,对黄土高原半干旱区的陆面过程进行了模拟研究。通过与观测值间的对比,考察不同陆面过程模式在半干旱区的适用性。研究结果表明:3个模式在半干旱区的模拟性能有较大差异。其中,CLM模式模拟的20 cm以上的浅层土壤温度最优,SHAW模式模拟的深层土壤温度最优;SHAW模式模拟的土壤含水量与观测值最为接近,而NOAH和CLM模式模拟值有较大偏差;3个模式均能较好地模拟地表反射辐射,其中SHAW模式模拟值与观测值的偏差最小;对地表长波辐射的模拟,CLM模式的模拟最优;3个模式均能较好地反映感热、潜热通量的变化趋势,其中CLM模式对感热的模拟性能优于其他两个模式,在有降水发生后的湿润条件下,CLM模式对潜热的模拟性能最优,而无降水的干燥条件下,CLM模式的模拟偏差最大,NOAH模式对冬季潜热的模拟最优。总体而言,CLM模式能够更好地再现半干旱区地气之间的相互作用,但模式对土壤含水量及干燥条件下的潜热通量的模拟较差,模式对半干旱区陆气间的水文过程还有待进一步的研究和改进。
文摘利用CLM(Common Land Model)模式对我国内蒙古奈曼旗农牧交错带沙漠和农田两种不同典型下垫面的陆面过程进行了数值模拟试验,并与外场试验观测结果进行了对比分析。结果表明:无论是沙漠还是农田试验,CLM都能够较好地模拟其辐射通量和土壤中的热传导特征,CLM的模拟结果能够真实地再现试验期间土壤热传导过程对天气过程的响应。相比而言,模式对沙漠地区长波辐射通量和干燥时期短波辐射通量的模拟结果好于农田,其原因可能是因为农田下垫面植被及土壤特征较沙漠复杂,有着很大的不确定性,造成了农田地表反照率和温度模拟的偏差。而对农田热传导的模拟结果好于沙漠,反映了CLM对含水量较大、持水力较强的农田下垫面的热传导模拟能力较好,而对含水量较小、持水力较弱的沙漠下垫面的热传导模拟能力相对较差。
文摘本文基于中国1:100万植被图、马里兰大学AVHRR森林覆盖资料和中国753个气象站点40年的降水气温资料,发展了一套用于气候模拟的中国陆面覆盖资料(Chinese land cover derived fromvegetation map,简称CLCV)。该套资料与CLM(Community Land Model)原来所用的MODIS(Moderate Resolution I maging Spectro-radiometer)陆面覆盖资料相比有较大不同:其中裸土比例减少了14.5%,森林、灌木、草原和农作物比例分别增加了3.3%、4.8%、4.4%和0.3%,冰川、湖泊和湿地比例分别增加了0.4%、0.8%和0.6%。将CLCV和MO-DIS资料分别与全国土地资源概查汇总结果分省统计资料和基于中国1km土地利用图的土地利用资料比较表明,CLCV与两者较为接近。最后,利用CLM模式分别采用CLCV与MODIS陆面覆盖资料在中国区域内进行数值模拟,结果显示,使用CLCV资料所模拟的蒸散增加了约7.7mm/a;地表反照率、感热和径流分别减小了约0.7%、0.3W/m2和7.6mm/a;与MODIS卫星反演地表反照率和GRDC(Global Runoff Data Centre)径流资料比较表明,利用CLCV资料所模拟的地表反照率有一定改进,并能基本模拟出径流分布趋势。
文摘基于2001年和2010年中分辨率成像光谱仪MODIS(MODerate-resolution Imaging Spectroradiometer)土地覆盖数据,利用公共陆面模式(Community Land Model, CLM)模拟真实的土地利用/覆盖变化(Land Use/Cover Change, LUCC)对地表能量平衡和水分循环过程的影响。研究表明:1)在2001~2010年,中国LUCC最明显的区域位于干旱半干旱区过渡带、半干旱半湿润区过渡带和南方地区;中国区域荒漠减少0.92%,草地减少0.01%,农田增加0.77%,森林增加2.86%,植被覆盖度整体增加。2)在2001年和2010年两种土地利用/覆盖背景下,LUCC使大部分地区感热通量增加,植被蒸腾、蒸发潜热通量增加,土壤表面蒸发潜热通量减小。3)LUCC使大部分地区地表径流减小;中国西北东部、华北和东北地区土壤湿度减小,其他地区土壤湿度增加,仅干旱半干旱过渡带上的土壤湿度发生了显著变化。4)当典型过渡带区域由荒漠变为草地后,感热通量增加1.11 W m-2,潜热通量增加0.14 W m-2;冠层蒸腾和蒸发分别增加0.039 mm d-1、0.009 mm d-1。土壤湿度平均减小0.01 m3 m-3,且随深度增加变干更明显,这是由于根系吸收了较多深层土壤水分,以满足植被显著增加的蒸腾而产生的结果。当草地变为灌木时,其能量通量和水分循环的变化与上述结果类似。