One of the central goals of community ecology is to understand the forces that maintain species diversity within communities.The traditional niche-assembly theory asserts that species live together in a community only...One of the central goals of community ecology is to understand the forces that maintain species diversity within communities.The traditional niche-assembly theory asserts that species live together in a community only when they differ from one another in resource uses.But this theory has some difficulties in explaining the diversity often observed in specie-rich communities such as tropical forests.As an alternative to the niche theory,Hubbell and other ecologists introduced a neutral model.Hubbell argues that the number of species in a community is controlled by species extinction and immigration or speciation of new species.Assuming that all individuals of all species in a trophically similar com-munity are ecologically equivalent,Hubbell’s neutral theory predicts two important statistical distributions.One is the asymptotic log-series distribution for the metacommunities under point mutation speciation,and the other is the zero-sum multinomial distribution for both local communities under dispersal limitation and metacommunities under random fission speciation.Unlike the niche-assembly theory,the neutral theory takes similarity in species and individuals as a starting point for investigating species diversity.Based on the fundamental processes of birth,death,dispersal and spe-ciation,the neutral theory provided the first mechanistic explanation of species abundance distribution commonly observed in natural communities.Since the publication of the neutral theory,there has been much discussion about it,pro and con.In this paper,we summarize recent progress in the assumption,prediction and speciation mode of the neutral theory,including progress in the theory itself,tests about the assumption of the theory,prediction and speciation mode at the metacommunity level.We also suggest that the most important task in the future is to bridge the niche-assembly theory and the neutral theory,and to add species differences to the neutral theory and more stochasticity to the niche theory.展开更多
Aims Environmental heterogeneity is a primary mechanism explain-ing species coexistence and extant patterns of diversity.Despite strong theoretical support and ample observational evidence,few experimental studies in ...Aims Environmental heterogeneity is a primary mechanism explain-ing species coexistence and extant patterns of diversity.Despite strong theoretical support and ample observational evidence,few experimental studies in plant communities have been able to demonstrate a causal link between environmental heterogene-ity and plant diversity.This lack of experimental evidence sug-gests that either fine-scale heterogeneity has weak effects on plant diversity or previous experiments have been unable to effectively manipulate heterogeneity.Here,we utilize a unique soil manipu-lation to test whether fine-scale soil heterogeneity will increase plant richness through species sorting among experimental patch types.Methods This experiment was conducted in the tallgrass prairie region of south-central Kansas,USA.We utilized the inherent variation found in the vertical soil profile,which varied in both biotic and abiotic characteristics,and redistributed these strata into either homoge-neous or heterogeneous spatial arrangements in 2.4×2.4 m plots.After the soil manipulation,34 native prairie species were sown into all plots.We conducted annual censuses at peak biomass to quantify species composition and plant density by species within the experimental communities.Important Findings After 2 years,species richness was significantly higher in heteroge-neous relative to homogeneous plots and this pattern was independ-ent of total plant density.In the heterogeneous plots,13 species had higher establishment in a specific patch type representing one of the three soil strata.Conversely,no species had greater estab-lishment in the mixed stratum,which comprised the homogene-ous plots,relative to the heterogeneous strata.These species sorting patterns suggest that fine-scale heterogeneity creates opportunities for plant establishment due to niche differences,which translates into increased plant diversity at the plot scale.Species richness was more strongly related to plant density among patches comprising homogenous plots-where fine-scale heterogeneity was minimized,but weak in heterogeneous plots.This pattern is consistent with the idea that richness-density relationships dominate when neutral pro-cesses are important but are weak when niche processes operate.Unlike many previous attempts,our results provide clear,experi-mental evidence that fine-scale soil heterogeneity increases species richness through species sorting during community assembly.展开更多
Recently, a phylogenetic diversity and community structure analysis as complementary to species-centric approaches in biodiversity studies provides new insights into the processes of community assembly. In this study,...Recently, a phylogenetic diversity and community structure analysis as complementary to species-centric approaches in biodiversity studies provides new insights into the processes of community assembly. In this study, we analyzed species and phylogenetic diversity and community structures for woody and herbaceous plants along two elevational transects on Mt. Baekhwa, South Korea. The species richness and phylogenetic diversity of woody plants showed monotonic declining patterns with increasing elevation along all transects, whereas herbaceous plants showed different patterns, such as no relationship and a reversed unimodal pattern, between the study transects. The main drivers of these patterns were climate and habitat variables for woody and herbaceous plants, respectively. In addition, the phylogenetic community structure primarily showed phylogenetic clustering regulated by deterministic processes, especially environmental filtering, such as climate or habitat factors, along the two transects, although herbaceous plants along a transect depicted phylogenetic randomness as a result of a neutral process. Our findings suggest that deterministic and neutral processes may simultaneously control the community structures along small-scale elevational gradients such as local transects, although the deterministic process may be the predominant type.展开更多
Aims The neutral theory of biodiversity has been criticized for being fragile with even slight deviations from its basic assumption of equal fitness among species.In response to this criticism,Hubbell((2001)The Unifie...Aims The neutral theory of biodiversity has been criticized for being fragile with even slight deviations from its basic assumption of equal fitness among species.In response to this criticism,Hubbell((2001)The Unified Neutral Theory of Biodiversity and Biogeography.Princeton,NJ:Princeton University Press)proposed that competitive exclusion can be infinitely delayed by dispersal and recruitment limitation,thus making species effectively neutral.But the theoretical foundation for this claim still remains unclear and controversial,and the effects of dispersal and recruitment limitation are often confounded,especially in field studies.This study aims to provide an affirmative theoretical answer to the question of whether dispersal limitation and recruitment limitation can separately or jointly overwhelm the effects of fitness differences among species and lead to neutral community dynamics.Methods Computer simulations were used to investigate the effects of dispersal and recruitment limitation on delaying competitive exclusion in a homogeneous habitat in a spatially explicit context.Important Findings We found that even a slight competitive asymmetry would require extremely strong dispersal and recruitment limitation for neutrality to emerge.Most importantly,when the effects of dispersal and recruitment limitation were set apart,it is found that recruitment limitation is more effective in delaying competitive exclusion,whereas dispersal limitation tends to have a stronger impact on the general shape of both species abundance distributions and species–area relationships.展开更多
Aims Recent mechanistic explanations for community assembly focus on the debates surrounding niche-based deterministic and dispersalbased stochastic models.This body of work has emphasized the importance of both habit...Aims Recent mechanistic explanations for community assembly focus on the debates surrounding niche-based deterministic and dispersalbased stochastic models.This body of work has emphasized the importance of both habitat filtering and dispersal limitation,and many of these works have utilized the assumption of species spatial independence to simplify the complexity of the spatial modeling in natural communities when given dispersal limitation and/or habitat filtering.One potential drawback of this simplification is that it does not consider species interactions and how they may influence the spatial distribution of species,phylogenetic and functional diversity.Here,we assess the validity of the assumption of species spatial independence using data from a subtropical forest plot in southeastern China.Methods We use the four most commonly employed spatial statistical models—the homogeneous Poisson process representing pure random effect,the heterogeneous Poisson process for the effect of habitat heterogeneity,the homogenous Thomas process for sole dispersal limitation and the heterogeneous Thomas process for joint effect of habitat heterogeneity and dispersal limitation—to investigate the contribution of different mechanisms in shaping the species,phylogenetic and functional structures of communities.Important Findings Our evidence from species,phylogenetic and functional diversity demonstrates that the habitat filtering and/or dispersal-based models perform well and the assumption of species spatial independence is relatively valid at larger scales(50×50 m).Conversely,at local scales(10×10 and 20×20 m),the models often fail to predict the species,phylogenetic and functional diversity,suggesting that the assumption of species spatial independence is invalid and that biotic interactions are increasingly important at these spatial scales.展开更多
基金This work was supported by the National Science Foundation of China(No.30670314,30300045,30125008).
文摘One of the central goals of community ecology is to understand the forces that maintain species diversity within communities.The traditional niche-assembly theory asserts that species live together in a community only when they differ from one another in resource uses.But this theory has some difficulties in explaining the diversity often observed in specie-rich communities such as tropical forests.As an alternative to the niche theory,Hubbell and other ecologists introduced a neutral model.Hubbell argues that the number of species in a community is controlled by species extinction and immigration or speciation of new species.Assuming that all individuals of all species in a trophically similar com-munity are ecologically equivalent,Hubbell’s neutral theory predicts two important statistical distributions.One is the asymptotic log-series distribution for the metacommunities under point mutation speciation,and the other is the zero-sum multinomial distribution for both local communities under dispersal limitation and metacommunities under random fission speciation.Unlike the niche-assembly theory,the neutral theory takes similarity in species and individuals as a starting point for investigating species diversity.Based on the fundamental processes of birth,death,dispersal and spe-ciation,the neutral theory provided the first mechanistic explanation of species abundance distribution commonly observed in natural communities.Since the publication of the neutral theory,there has been much discussion about it,pro and con.In this paper,we summarize recent progress in the assumption,prediction and speciation mode of the neutral theory,including progress in the theory itself,tests about the assumption of the theory,prediction and speciation mode at the metacommunity level.We also suggest that the most important task in the future is to bridge the niche-assembly theory and the neutral theory,and to add species differences to the neutral theory and more stochasticity to the niche theory.
文摘Aims Environmental heterogeneity is a primary mechanism explain-ing species coexistence and extant patterns of diversity.Despite strong theoretical support and ample observational evidence,few experimental studies in plant communities have been able to demonstrate a causal link between environmental heterogene-ity and plant diversity.This lack of experimental evidence sug-gests that either fine-scale heterogeneity has weak effects on plant diversity or previous experiments have been unable to effectively manipulate heterogeneity.Here,we utilize a unique soil manipu-lation to test whether fine-scale soil heterogeneity will increase plant richness through species sorting among experimental patch types.Methods This experiment was conducted in the tallgrass prairie region of south-central Kansas,USA.We utilized the inherent variation found in the vertical soil profile,which varied in both biotic and abiotic characteristics,and redistributed these strata into either homoge-neous or heterogeneous spatial arrangements in 2.4×2.4 m plots.After the soil manipulation,34 native prairie species were sown into all plots.We conducted annual censuses at peak biomass to quantify species composition and plant density by species within the experimental communities.Important Findings After 2 years,species richness was significantly higher in heteroge-neous relative to homogeneous plots and this pattern was independ-ent of total plant density.In the heterogeneous plots,13 species had higher establishment in a specific patch type representing one of the three soil strata.Conversely,no species had greater estab-lishment in the mixed stratum,which comprised the homogene-ous plots,relative to the heterogeneous strata.These species sorting patterns suggest that fine-scale heterogeneity creates opportunities for plant establishment due to niche differences,which translates into increased plant diversity at the plot scale.Species richness was more strongly related to plant density among patches comprising homogenous plots-where fine-scale heterogeneity was minimized,but weak in heterogeneous plots.This pattern is consistent with the idea that richness-density relationships dominate when neutral pro-cesses are important but are weak when niche processes operate.Unlike many previous attempts,our results provide clear,experi-mental evidence that fine-scale soil heterogeneity increases species richness through species sorting during community assembly.
基金funded by the Korea Green Promotion Agency, Korea Forest Service
文摘Recently, a phylogenetic diversity and community structure analysis as complementary to species-centric approaches in biodiversity studies provides new insights into the processes of community assembly. In this study, we analyzed species and phylogenetic diversity and community structures for woody and herbaceous plants along two elevational transects on Mt. Baekhwa, South Korea. The species richness and phylogenetic diversity of woody plants showed monotonic declining patterns with increasing elevation along all transects, whereas herbaceous plants showed different patterns, such as no relationship and a reversed unimodal pattern, between the study transects. The main drivers of these patterns were climate and habitat variables for woody and herbaceous plants, respectively. In addition, the phylogenetic community structure primarily showed phylogenetic clustering regulated by deterministic processes, especially environmental filtering, such as climate or habitat factors, along the two transects, although herbaceous plants along a transect depicted phylogenetic randomness as a result of a neutral process. Our findings suggest that deterministic and neutral processes may simultaneously control the community structures along small-scale elevational gradients such as local transects, although the deterministic process may be the predominant type.
基金National Natural Science Foundation of China(30970543,31030014)Program for New Century Excellent Talents in University(2006-0907)the Fundamental Research Funds for the Central Universities.
文摘Aims The neutral theory of biodiversity has been criticized for being fragile with even slight deviations from its basic assumption of equal fitness among species.In response to this criticism,Hubbell((2001)The Unified Neutral Theory of Biodiversity and Biogeography.Princeton,NJ:Princeton University Press)proposed that competitive exclusion can be infinitely delayed by dispersal and recruitment limitation,thus making species effectively neutral.But the theoretical foundation for this claim still remains unclear and controversial,and the effects of dispersal and recruitment limitation are often confounded,especially in field studies.This study aims to provide an affirmative theoretical answer to the question of whether dispersal limitation and recruitment limitation can separately or jointly overwhelm the effects of fitness differences among species and lead to neutral community dynamics.Methods Computer simulations were used to investigate the effects of dispersal and recruitment limitation on delaying competitive exclusion in a homogeneous habitat in a spatially explicit context.Important Findings We found that even a slight competitive asymmetry would require extremely strong dispersal and recruitment limitation for neutrality to emerge.Most importantly,when the effects of dispersal and recruitment limitation were set apart,it is found that recruitment limitation is more effective in delaying competitive exclusion,whereas dispersal limitation tends to have a stronger impact on the general shape of both species abundance distributions and species–area relationships.
基金NSFC grant of National Natural Science Foundation of China(31170401)Dimensions of biodiversity grant of Natural Science Fundation(NSF 1046113)Natural Science Foundation of Zhejiang Province(Y5100361).
文摘Aims Recent mechanistic explanations for community assembly focus on the debates surrounding niche-based deterministic and dispersalbased stochastic models.This body of work has emphasized the importance of both habitat filtering and dispersal limitation,and many of these works have utilized the assumption of species spatial independence to simplify the complexity of the spatial modeling in natural communities when given dispersal limitation and/or habitat filtering.One potential drawback of this simplification is that it does not consider species interactions and how they may influence the spatial distribution of species,phylogenetic and functional diversity.Here,we assess the validity of the assumption of species spatial independence using data from a subtropical forest plot in southeastern China.Methods We use the four most commonly employed spatial statistical models—the homogeneous Poisson process representing pure random effect,the heterogeneous Poisson process for the effect of habitat heterogeneity,the homogenous Thomas process for sole dispersal limitation and the heterogeneous Thomas process for joint effect of habitat heterogeneity and dispersal limitation—to investigate the contribution of different mechanisms in shaping the species,phylogenetic and functional structures of communities.Important Findings Our evidence from species,phylogenetic and functional diversity demonstrates that the habitat filtering and/or dispersal-based models perform well and the assumption of species spatial independence is relatively valid at larger scales(50×50 m).Conversely,at local scales(10×10 and 20×20 m),the models often fail to predict the species,phylogenetic and functional diversity,suggesting that the assumption of species spatial independence is invalid and that biotic interactions are increasingly important at these spatial scales.