This analysis evaluates the possibility of the search for Dark Matter(DM)particles using events with a Zf heavy gauge boson and a large missing transverse momentum at the Large Hadron Collider(LHC).We consider the muo...This analysis evaluates the possibility of the search for Dark Matter(DM)particles using events with a Zf heavy gauge boson and a large missing transverse momentum at the Large Hadron Collider(LHC).We consider the muonic decay of Z'.The analyzed Monte Carlo samples were the Open simulated files produced by the Compact Muon Solenoid(CMS)collaboration for proton-proton collisions,corresponding to an integrated luminosity of the LHC run-I with 19.7 fb^(-1) at √s=8 TeV.Two scenarios,namely a simplified benchmark scenario,called Dark Higgs,and the effective field theory(EFT)formalism,were used for interpretations.Limits were set on Z′,dark matter masses,and the cutoff scale of the EFT.展开更多
基金Support by the Centre for Theoretical Physics(CTP)at the British University in Egypt(BUE)。
文摘This analysis evaluates the possibility of the search for Dark Matter(DM)particles using events with a Zf heavy gauge boson and a large missing transverse momentum at the Large Hadron Collider(LHC).We consider the muonic decay of Z'.The analyzed Monte Carlo samples were the Open simulated files produced by the Compact Muon Solenoid(CMS)collaboration for proton-proton collisions,corresponding to an integrated luminosity of the LHC run-I with 19.7 fb^(-1) at √s=8 TeV.Two scenarios,namely a simplified benchmark scenario,called Dark Higgs,and the effective field theory(EFT)formalism,were used for interpretations.Limits were set on Z′,dark matter masses,and the cutoff scale of the EFT.