Due to large workspace,heavy-duty and over-constrained mechanism,a small deformation is caused and the precision of the 2-DOF planar parallel manipulator is affected.The kinematic calibration cannot compensate the end...Due to large workspace,heavy-duty and over-constrained mechanism,a small deformation is caused and the precision of the 2-DOF planar parallel manipulator is affected.The kinematic calibration cannot compensate the end-effector errors caused by the small deformation.This paper presents a method combined step kinematic calibration and linear forecast real-time error compensation in order to enhance the precision of a two degree-of-freedom(DOF) planar parallel manipulator of a hybrid machine tool.In the step kinematic calibration phase of the method,the end-effector errors caused by the errors of major constant geometrical parameters is compensated.The step kinematic calibration is based on the minimal linear combinations(MLCs) of the error parameters.All simple and feasible measurements in practice are given,and identification analysis of the set of the MLCs for each measurement is carried out.According to identification analysis results,both measurement costs and observability are considered,and a step calibration including step measurement,step identification and step error compensation is determined.The linear forecast real-time error compensation is used to compensate the end-effector errors caused by other parameters after the step kinematic calibration.Taking the advantages of the step kinematic calibration and the linear forecast real-time error compensation,a method for improving the precision of the 2-DOF planar parallel manipulator is developed.Experiment results show that the proposed method is robust and effective,so that the position errors are kept to the same order of the measurement noise.The presented method is attractive for the 2-DOF planar parallel manipulator and can be also applied to other parallel manipulators with fewer than six DOFs.展开更多
To improve the robustness of high-precision servo systems, quantitative feedback theory (QFT) which aims to achieve a desired robust design over a specified region of plant uncertainty is proposed. The robust design...To improve the robustness of high-precision servo systems, quantitative feedback theory (QFT) which aims to achieve a desired robust design over a specified region of plant uncertainty is proposed. The robust design problem can be solved using QFT but it fails to guarantee a high precision tracking. This problem is solved by a robust digital QFT control scheme based on zero phase error (ZPE) feed forward compensation. This scheme consists of two parts: a QFT controller in the closed-loop system and a ZPE feed-forward compensator. Digital QFT controller is designed to overcome the uncertainties in the system. Digital ZPE feed forward controller is used to improve the tracking precision. Simulation and real-time examples for flight simulator servo system indicate that this control scheme can guarantee both high robust performance and high position tracking precision.展开更多
Microstructured roll workpieces have been widely used as functional components in the precision industries. Current researches on quality control have focused on surface profile measurement of microstructured roll wor...Microstructured roll workpieces have been widely used as functional components in the precision industries. Current researches on quality control have focused on surface profile measurement of microstructured roll workpieces, and types of measurement systems and measurement methods have been developed. However, low measurement efficiency and low measurement accuracy caused by setting errors are the common disadvantages for surface profile measurement of microstructured roll workpieces. In order to shorten the measurement time and enhance the measurement accuracy, a method for self-calibration and compensation of setting errors is proposed for surface profile measurement of microstructured roll workpieces. A measurement system is constructed for the measurement, in which a precision spindle is employed to rotate the roll workpiece and an air-bearing displacement sensor with a micro-stylus probe is employed to scan the microstructured surface of the roll workpiece. The resolution of the displacement sensor is 0.14 nm and that of the rotary encoder of the spindle was 0.15r~. Geometrical and mathematical models are established for analyzing the influences of the setting errors of the roll workpiece and the displacement sensor with respect to the axis of the spindle, including the eccentric error of the roll workpiece, the offset error of the sensor axis and the zero point error of the sensor output. Measurement experiments are carded out on a roll workpiece on which periodic microstructures are a period of 133 i^m along the circumferential direction. Experimental results demonstrate the feasibility of the self-compensation method. The proposed method can be used to detect and compensate the setting errors without using any additional accurate artifact.展开更多
Installation error angle is one of the factors that affect the accuracy of electronic compass used for geomagnetic navigation.To solve this problem,the calibration and compensation methods for installation error angle...Installation error angle is one of the factors that affect the accuracy of electronic compass used for geomagnetic navigation.To solve this problem,the calibration and compensation methods for installation error angle are studied.By analyzing the generation mechanism of installation error angle of electronic compass,an installation error model is established,compensation formulae are derived,and calibration scheme is proposed.To verify the correctness of the calibration and compensation methods,the verification experiment is conducted by computer simulation.The simulation results show that the proposed calibration and compensation methods are effective and practical.展开更多
A new method was proposed, in which a high-power CO2 laser modulated by high frequency was used as the driv- ing source to heat up a surface-temperature sensor. The continual beam and the pulsed beam sent out by the s...A new method was proposed, in which a high-power CO2 laser modulated by high frequency was used as the driv- ing source to heat up a surface-temperature sensor. The continual beam and the pulsed beam sent out by the same laser could be used in the same system to carry on the static calibration of the radiation thermometer and the dynamic calibration of the temperature sensor to be checked. The frequency-response characteristics of high-speed radiation thermometer surpassed that of the temperature sensor, therefore it could be used as the reference value to calibrate the latter and let system error be cor- rected. Differences in the environment of the sensor installing and the error caused by the change of thermo-physical proper- ty could be avoided. Thus, the difficult problem of traceable dynamic calibration of temperature was solved. In experiment, to obtain the frequency characteristics of the thermocouple and the dynamic performance of the K type thermocouple, which could compensate the dynamic characteristics of the sensor, the sensor was dynamically corrected by using the method, and then the mathematical model was established.展开更多
To address the eccentric error of circular marks in camera calibration,a circle location method based on the invariance of collinear points and pole–polar constraint is proposed in this paper.Firstly,the centers of t...To address the eccentric error of circular marks in camera calibration,a circle location method based on the invariance of collinear points and pole–polar constraint is proposed in this paper.Firstly,the centers of the ellipses are extracted,and the real concentric circle center projection equation is established by exploiting the cross ratio invariance of the collinear points.Subsequently,since the infinite lines passing through the centers of the marks are parallel,the other center projection coordinates are expressed as the solution problem of linear equations.The problem of projection deviation caused by using the center of the ellipse as the real circle center projection is addressed,and the results are utilized as the true image points to achieve the high precision camera calibration.As demonstrated by the simulations and practical experiments,the proposed method performs a better location and calibration performance by achieving the actual center projection of circular marks.The relevant results confirm the precision and robustness of the proposed approach.展开更多
A system for measuring the quality parameters of elevator guide rails is developed. The quality parameters the system can measure include straightness, flatness, squareness, width and height of the rail. The system co...A system for measuring the quality parameters of elevator guide rails is developed. The quality parameters the system can measure include straightness, flatness, squareness, width and height of the rail. The system consists of six parts:main guideway, auxiliary guideway, reference rail, saddle, control casing and measured rail. The guide rail to be measured is mounted on a bed. The straightness errors of surfaces are checked by five linear displacement sensors mounted on the saddle. The deviation of readings from the sensor, which is in contact with top guiding surface, gives the straightness error of the surface and height of the rail. The other four sensors are used to measure side guiding surfaces respectively and give other parameters including flatness on the surfaces, squareness, width and height of the rail. A novel calibration method is also developed to calibrate the straightness motion error of the system in horizontal and vertical directions. The deflection deformation of the measured rail is fitted by using a fourth-order polynomial. Experimental results show that the uncertainty of the system on the side surfaces after compensating the straightness motion error is less than 0. 01 mm, and the uncertainty of the system on the top surface after compensating the straightness motion error and the deflection deformation of the rail is less than 0. 03 mm.展开更多
This paper presents an efficient robot calibration method with non-contact vision metrology. Using the coplanar pattern to calibrate camera made the active-vision-based end-effector pose measurement be a feasible and ...This paper presents an efficient robot calibration method with non-contact vision metrology. Using the coplanar pattern to calibrate camera made the active-vision-based end-effector pose measurement be a feasible and costeffective way. Kinematic parameter errors were linearized and identified through two-step procedure, thus the singular and non-linear condition was overcome. These errors were then compensated using inverse model method. The whole calibration process is flexible, easy to implement and prevents the error propagation from the earlier stages to the later ones. Calibration was performed on MOTOMAN SV3industrial robot. Experiment results show that the proposed method is easy to setup and with satisfactory accuracy.展开更多
基金supported by National Natural Science Foundation of China(Grant No. 50805140)National Hi-tech Research and Development Program of China(863 Program,Grant No. 2007AA04Z227)
文摘Due to large workspace,heavy-duty and over-constrained mechanism,a small deformation is caused and the precision of the 2-DOF planar parallel manipulator is affected.The kinematic calibration cannot compensate the end-effector errors caused by the small deformation.This paper presents a method combined step kinematic calibration and linear forecast real-time error compensation in order to enhance the precision of a two degree-of-freedom(DOF) planar parallel manipulator of a hybrid machine tool.In the step kinematic calibration phase of the method,the end-effector errors caused by the errors of major constant geometrical parameters is compensated.The step kinematic calibration is based on the minimal linear combinations(MLCs) of the error parameters.All simple and feasible measurements in practice are given,and identification analysis of the set of the MLCs for each measurement is carried out.According to identification analysis results,both measurement costs and observability are considered,and a step calibration including step measurement,step identification and step error compensation is determined.The linear forecast real-time error compensation is used to compensate the end-effector errors caused by other parameters after the step kinematic calibration.Taking the advantages of the step kinematic calibration and the linear forecast real-time error compensation,a method for improving the precision of the 2-DOF planar parallel manipulator is developed.Experiment results show that the proposed method is robust and effective,so that the position errors are kept to the same order of the measurement noise.The presented method is attractive for the 2-DOF planar parallel manipulator and can be also applied to other parallel manipulators with fewer than six DOFs.
基金This project was supported by the Aeronautics Foundation of China (00E51022).
文摘To improve the robustness of high-precision servo systems, quantitative feedback theory (QFT) which aims to achieve a desired robust design over a specified region of plant uncertainty is proposed. The robust design problem can be solved using QFT but it fails to guarantee a high precision tracking. This problem is solved by a robust digital QFT control scheme based on zero phase error (ZPE) feed forward compensation. This scheme consists of two parts: a QFT controller in the closed-loop system and a ZPE feed-forward compensator. Digital QFT controller is designed to overcome the uncertainties in the system. Digital ZPE feed forward controller is used to improve the tracking precision. Simulation and real-time examples for flight simulator servo system indicate that this control scheme can guarantee both high robust performance and high position tracking precision.
文摘Microstructured roll workpieces have been widely used as functional components in the precision industries. Current researches on quality control have focused on surface profile measurement of microstructured roll workpieces, and types of measurement systems and measurement methods have been developed. However, low measurement efficiency and low measurement accuracy caused by setting errors are the common disadvantages for surface profile measurement of microstructured roll workpieces. In order to shorten the measurement time and enhance the measurement accuracy, a method for self-calibration and compensation of setting errors is proposed for surface profile measurement of microstructured roll workpieces. A measurement system is constructed for the measurement, in which a precision spindle is employed to rotate the roll workpiece and an air-bearing displacement sensor with a micro-stylus probe is employed to scan the microstructured surface of the roll workpiece. The resolution of the displacement sensor is 0.14 nm and that of the rotary encoder of the spindle was 0.15r~. Geometrical and mathematical models are established for analyzing the influences of the setting errors of the roll workpiece and the displacement sensor with respect to the axis of the spindle, including the eccentric error of the roll workpiece, the offset error of the sensor axis and the zero point error of the sensor output. Measurement experiments are carded out on a roll workpiece on which periodic microstructures are a period of 133 i^m along the circumferential direction. Experimental results demonstrate the feasibility of the self-compensation method. The proposed method can be used to detect and compensate the setting errors without using any additional accurate artifact.
基金Natural Science Foundation of Shanxi Province(No.2010011022-4)
文摘Installation error angle is one of the factors that affect the accuracy of electronic compass used for geomagnetic navigation.To solve this problem,the calibration and compensation methods for installation error angle are studied.By analyzing the generation mechanism of installation error angle of electronic compass,an installation error model is established,compensation formulae are derived,and calibration scheme is proposed.To verify the correctness of the calibration and compensation methods,the verification experiment is conducted by computer simulation.The simulation results show that the proposed calibration and compensation methods are effective and practical.
基金Research Project Supported by Shanxi Scholarship Council of China(No.2012-068)Taiyuan Science and Technology Agency(No.120247-20)Surface-temperature Sensor Dynamic Measurement and Calibration Technology Research of National Defense Fundamental Scientific Research
文摘A new method was proposed, in which a high-power CO2 laser modulated by high frequency was used as the driv- ing source to heat up a surface-temperature sensor. The continual beam and the pulsed beam sent out by the same laser could be used in the same system to carry on the static calibration of the radiation thermometer and the dynamic calibration of the temperature sensor to be checked. The frequency-response characteristics of high-speed radiation thermometer surpassed that of the temperature sensor, therefore it could be used as the reference value to calibrate the latter and let system error be cor- rected. Differences in the environment of the sensor installing and the error caused by the change of thermo-physical proper- ty could be avoided. Thus, the difficult problem of traceable dynamic calibration of temperature was solved. In experiment, to obtain the frequency characteristics of the thermocouple and the dynamic performance of the K type thermocouple, which could compensate the dynamic characteristics of the sensor, the sensor was dynamically corrected by using the method, and then the mathematical model was established.
基金supported by the Aerospace Science and Technology Joint Fund(6141B061505)the National Natural Science Foundation of China(61473100).
文摘To address the eccentric error of circular marks in camera calibration,a circle location method based on the invariance of collinear points and pole–polar constraint is proposed in this paper.Firstly,the centers of the ellipses are extracted,and the real concentric circle center projection equation is established by exploiting the cross ratio invariance of the collinear points.Subsequently,since the infinite lines passing through the centers of the marks are parallel,the other center projection coordinates are expressed as the solution problem of linear equations.The problem of projection deviation caused by using the center of the ellipse as the real circle center projection is addressed,and the results are utilized as the true image points to achieve the high precision camera calibration.As demonstrated by the simulations and practical experiments,the proposed method performs a better location and calibration performance by achieving the actual center projection of circular marks.The relevant results confirm the precision and robustness of the proposed approach.
基金the United Technology Research Center( UTRC)Factory of Tianjin Elevator Rail in China
文摘A system for measuring the quality parameters of elevator guide rails is developed. The quality parameters the system can measure include straightness, flatness, squareness, width and height of the rail. The system consists of six parts:main guideway, auxiliary guideway, reference rail, saddle, control casing and measured rail. The guide rail to be measured is mounted on a bed. The straightness errors of surfaces are checked by five linear displacement sensors mounted on the saddle. The deviation of readings from the sensor, which is in contact with top guiding surface, gives the straightness error of the surface and height of the rail. The other four sensors are used to measure side guiding surfaces respectively and give other parameters including flatness on the surfaces, squareness, width and height of the rail. A novel calibration method is also developed to calibrate the straightness motion error of the system in horizontal and vertical directions. The deflection deformation of the measured rail is fitted by using a fourth-order polynomial. Experimental results show that the uncertainty of the system on the side surfaces after compensating the straightness motion error is less than 0. 01 mm, and the uncertainty of the system on the top surface after compensating the straightness motion error and the deflection deformation of the rail is less than 0. 03 mm.
文摘This paper presents an efficient robot calibration method with non-contact vision metrology. Using the coplanar pattern to calibrate camera made the active-vision-based end-effector pose measurement be a feasible and costeffective way. Kinematic parameter errors were linearized and identified through two-step procedure, thus the singular and non-linear condition was overcome. These errors were then compensated using inverse model method. The whole calibration process is flexible, easy to implement and prevents the error propagation from the earlier stages to the later ones. Calibration was performed on MOTOMAN SV3industrial robot. Experiment results show that the proposed method is easy to setup and with satisfactory accuracy.