期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Application of a soft competition learning method in document clustering
1
作者 Zhu Yehang Zhang Mingjie 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2018年第3期80-91,共12页
Hard competition learning has the feature that each point modifies only one cluster centroid that wins. Correspondingly, soft competition learning has the feature that each point modifies not only the cluster centroid... Hard competition learning has the feature that each point modifies only one cluster centroid that wins. Correspondingly, soft competition learning has the feature that each point modifies not only the cluster centroid that wins, but also many other cluster centroids near this point. A soft competition learning method is proposed. Centroid all rank distance (CARD), CARDx, and centroid all rank distance batch K-means (CARDBK) are three clustering algorithms that adopt the proposed soft competition learning method. Among them the extent to which one point affects a cluster centroid depends on the distances from this point to the other nearer cluster centroids, rather than just the rank number of the distance from this point to this cluster centroid among the distances from this point to all cluster centroids. In addition, the validation experiments are carried out in order to compare the three soft competition learning algorithms CARD, CARDx, and CARDBK with several hard competition learning algorithms as well as neural gas (NG) algorithm on five data sets from different sources. Judging from the values of five performance indexes in the clustering results, this kind of soft competition learning method has better clustering effect and efficiency, and has linear scalability. 展开更多
关键词 clustering methods text processing document handling competition learning method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部