期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
基于CSA-PLS算法的养殖水体水质快速高光谱预测反演模型研究
1
作者 马启良 刘梅 +2 位作者 祁亨年 杨小明 原居林 《海洋与湖沼》 CAS CSCD 北大核心 2024年第2期375-385,共11页
养殖水体水质的优劣直接影响养殖对象的成长,准确、快速、全面地掌控养殖水环境的水质参数变化情况具有重要意义。传统的水质指标监测方法都通过人工采样的方式,不仅耗费时间长,且只能体现局部水体情况。针对这些问题,提出了一种乌鸦搜... 养殖水体水质的优劣直接影响养殖对象的成长,准确、快速、全面地掌控养殖水环境的水质参数变化情况具有重要意义。传统的水质指标监测方法都通过人工采样的方式,不仅耗费时间长,且只能体现局部水体情况。针对这些问题,提出了一种乌鸦搜索算法(CSA)结合偏最小二乘回归(PLSR)的高光谱特征波段筛选方法,快速构建回归模型,实现光谱数据的精准预测反演。以连片的养殖小区为研究对象,采集养殖水体样本并拍摄同时期的高光谱影像数据。首先对提取的采样点光谱数据利用多种数据变换方法分别预处理;其次利用这些数据,对水质指标总氮(TN)、氨氮(NH_(4)^(+)-N)、总磷(TP)和化学需氧量(COD)分别构建全波段的SVR和AdaBoost回归模型,同时与提出的CSA-PLS自动筛选波段方法和传统的连续投影算法(SPA)筛选波段后构建的模型进行比较分析;最后根据决定系数(R^(2))和均方根误差(REMS)选出适合各水质指标的最优模型。从实验结果可以看出,所提波段筛选方法的AdaBoost模型预测结果优于SVR和传统SPA方法提取特征波段后构建的模型,与全波段最优模型相比,在评价指标R^(2)和RMSE上TN提升了18.32%和10.73%;NH_(4)^(+)-N提升了17.42%和11.19%;COD提升了2.15%和2.54%。结果表明,基于CSA-PLS算法的光谱波段自动筛选方法结合AdaBoost构建的预测反演模型是有效、可行的,具有较高的精准度,为实现养殖水环境实时准确的预警调控提供了一种新的数据预测模型。 展开更多
关键词 高光谱数据 水质预测 乌鸦搜索算法 养殖水环境 集成学习
下载PDF
Cuckoo search algorithm-based optimal deployment method of heterogeneous multistatic radar for barrier coverage
2
作者 LI Haipeng FENG Dazheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1101-1115,共15页
This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment ... This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment patterns in the optimal deployment sequence.Based on these properties and considering location restrictions,it introduces an optimization model of arc barrier coverage and aims to minimize the total deployment cost of heterogeneous multistatic radars.To overcome the non-convexity of the model and the non-analytical nature of the objective function,an algorithm combining integer line programming and the cuckoo search algorithm(CSA)is proposed.The proposed algorithm can determine the number of receivers and transmitters in each optimal deployment squence to minimize the total placement cost.Simulations are conducted in different conditions to verify the effectiveness of the proposed method. 展开更多
关键词 heterogeneous multistatic radar(HMR) arc barrier coverage minimum deployment cost optimal deployment sequence cuckoo search algorithm(csa)
下载PDF
Wild Gibbon Optimization Algorithm
3
作者 Jia Guo JinWang +5 位作者 Ke Yan Qiankun Zuo Ruiheng Li Zhou He Dong Wang Yuji Sato 《Computers, Materials & Continua》 SCIE EI 2024年第7期1203-1233,共31页
Complex optimization problems hold broad significance across numerous fields and applications.However,as the dimensionality of such problems increases,issues like the curse of dimensionality and local optima trapping ... Complex optimization problems hold broad significance across numerous fields and applications.However,as the dimensionality of such problems increases,issues like the curse of dimensionality and local optima trapping also arise.To address these challenges,this paper proposes a novel Wild Gibbon Optimization Algorithm(WGOA)based on an analysis of wild gibbon population behavior.WGOAcomprises two strategies:community search and community competition.The community search strategy facilitates information exchange between two gibbon families,generating multiple candidate solutions to enhance algorithm diversity.Meanwhile,the community competition strategy reselects leaders for the population after each iteration,thus enhancing algorithm precision.To assess the algorithm’s performance,CEC2017 and CEC2022 are chosen as test functions.In the CEC2017 test suite,WGOA secures first place in 10 functions.In the CEC2022 benchmark functions,WGOA obtained the first rank in 5 functions.The ultimate experimental findings demonstrate that theWildGibbonOptimization Algorithm outperforms others in tested functions.This underscores the strong robustness and stability of the gibbonalgorithm in tackling complex single-objective optimization problems. 展开更多
关键词 Complex optimization wild gibbon optimization algorithm community search community competition
下载PDF
基于SA-CSA算法的露天矿卡车调度优化方法 被引量:1
4
作者 田丰 唐晓骞 乔东青 《中国安全科学学报》 CAS CSCD 北大核心 2023年第S02期176-181,共6页
为提高露天矿卡车的运输效率,降低矿山企业的开采成本,以露天矿卡车运输调度的综合成本最低为目标函数,考虑矿石产量、品位均衡、运输时间等约束条件,结合模拟退火法(SA)和乌鸦搜索算法(CSA),提出SA-CSA算法求解露天矿卡车调度优化问题... 为提高露天矿卡车的运输效率,降低矿山企业的开采成本,以露天矿卡车运输调度的综合成本最低为目标函数,考虑矿石产量、品位均衡、运输时间等约束条件,结合模拟退火法(SA)和乌鸦搜索算法(CSA),提出SA-CSA算法求解露天矿卡车调度优化问题,并以某大型露天矿山为例,将SA-CSA算法的优化结果与SA算法和CSA算法的优化结果比较。结果表明:SA-CSA算法的求解精度和收敛速度均优于SA算法和CSA算法。 展开更多
关键词 模拟退火法(SA) 乌鸦搜索算法(csa) SA-csa 露天矿 卡车调度优化
下载PDF
Global Optimization for Combination Test Suite by Cluster Searching Algorithm
5
作者 Hao Chen Xiaoying Pan Jiaze Sun 《自动化学报》 EI CSCD 北大核心 2017年第9期1625-1635,共11页
下载PDF
基于能量均衡的非均匀分簇调度算法
6
作者 崔颖 李巧珏 +1 位作者 高山 陈立伟 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第9期1834-1839,共6页
针对无线传感器网络节点能量有限且不可充电的问题,本文提出基于能量均衡的非均匀分簇调度算法(EBNC_CHES)延长网络寿命。EBNC_CHES在麻雀搜索算法的基础上,引入时间竞争机制减少冗余信息获取和能耗传递的同时,采取K-means非均匀分簇均... 针对无线传感器网络节点能量有限且不可充电的问题,本文提出基于能量均衡的非均匀分簇调度算法(EBNC_CHES)延长网络寿命。EBNC_CHES在麻雀搜索算法的基础上,引入时间竞争机制减少冗余信息获取和能耗传递的同时,采取K-means非均匀分簇均衡簇间网络能量消耗,引入改进的麻雀搜索在簇头选举中均衡簇内能耗。仿真结果表明:该算法与LEACH、EECHS_ISSADE和EESSTBRP相比,冗余信息降低了81%、80%、55%,能耗利用率提高了133%、50%、11.4%,寿命延长了52.8%、43.5%、12.2%。此算法能减少冗余信息,降低网络能耗、延长网络寿命。 展开更多
关键词 麻雀搜索算法 时间竞争调度 K-MEANS算法 网络能耗 非均匀分簇 层次分析法 簇头选举 能量均衡
下载PDF
基于领导者竞争策略的改进猎人猎物优化算法 被引量:2
7
作者 常耀华 韦根原 《计算机应用研究》 CSCD 北大核心 2024年第1期142-149,共8页
针对猎人猎物优化算法寻优精度低和易陷入局部最优等问题,提出了一种基于领导者竞争策略的改进猎人猎物优化算法。首先将种群随机分为三个亚群,采用不同的搜索策略,扩大搜索范围;其次,采用精英组合突变策略,提升种群子代多样性,规避局... 针对猎人猎物优化算法寻优精度低和易陷入局部最优等问题,提出了一种基于领导者竞争策略的改进猎人猎物优化算法。首先将种群随机分为三个亚群,采用不同的搜索策略,扩大搜索范围;其次,采用精英组合突变策略,提升种群子代多样性,规避局部最优值;最后,提出领导者竞争策略,利用个体间的信息交流,统合各个策略,筛选出最优变量。通过数值实验以及在工程优化问题上的应用结果表明,所提算法相较于对比算法具有更为优异的寻优能力,验证了改进策略的有效性和可靠性。 展开更多
关键词 猎人猎物优化算法 精英组合突变策略 领导者竞争策略 均值搜索策略 正余弦策略
下载PDF
一种改进CSA算法的UAV多任务区侦察决策问题研究 被引量:4
8
作者 张耀中 陈岚 +1 位作者 张蕾 谢松岩 《电光与控制》 北大核心 2018年第5期1-6,共6页
针对不确定性环境下的多任务区遍历侦察决策问题,将整个任务执行过程分为两个阶段,首先根据侦察任务区的信息及UAV自身性能,采用离散布谷鸟搜索算法解决侦察路径最优化问题,使遍历侦察全部任务区的航路最短。然后根据任务载荷及待侦察... 针对不确定性环境下的多任务区遍历侦察决策问题,将整个任务执行过程分为两个阶段,首先根据侦察任务区的信息及UAV自身性能,采用离散布谷鸟搜索算法解决侦察路径最优化问题,使遍历侦察全部任务区的航路最短。然后根据任务载荷及待侦察任务区的特性,在确保遍历侦察全部任务区及满足最小侦察收益的前提下,利用改进的布谷鸟搜索算法为每个待侦察任务区分配最优的任务侦察时间,从而使整个侦察任务过程的信息收益最大化。最后通过仿真验证了决策方案的有效性和可行性,通过与传统遗传算法的对比分析,证明改进的布谷鸟搜索算法对此类侦察决策问题的运行效率与传统遗传算法相比有较大提高,从而为UAV多任务区的最优化遍历侦察问题提供了科学的决策依据。 展开更多
关键词 UAV 航路规划 侦察收益 布谷鸟算法 离散布谷鸟算法
下载PDF
融合边界处理机制的学习型麻雀搜索算法 被引量:3
9
作者 王子恺 黄学雨 +3 位作者 朱东林 闫少强 李权 郭伟 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第1期286-298,共13页
为改善麻雀搜索算法(SSA)初始化阶段种群分布不充分,寻优过程中容易受到局部最优解干扰的不足,提出融合边界处理机制的学习型麻雀搜索算法(HSSA)。使用Piecewise map初始化种群,提高种群的分散程度;使用排序配对学习与竞争学习策略分别... 为改善麻雀搜索算法(SSA)初始化阶段种群分布不充分,寻优过程中容易受到局部最优解干扰的不足,提出融合边界处理机制的学习型麻雀搜索算法(HSSA)。使用Piecewise map初始化种群,提高种群的分散程度;使用排序配对学习与竞争学习策略分别更新跟随者和警戒者,确保各代的最优解信息能够引导下一代的位置更新;自适应的警戒者数量使得警戒者作用被强调,提供灵活的应变机制;根据不同阶段的寻优特点制定多策略边界处理机制,保留住种群数量的同时,为超出边界的个体提供更加合理的搜索位置。经过12个基准函数的仿真实验,并借助消融实验、Wilcoxon秩和检验等证明了HSSA在收敛速度上的稳定性和寻优的高效性。 展开更多
关键词 麻雀搜索算法 Piecewise map 排序配对学习 竞争学习 多策略边界处理
下载PDF
一种以优秀个体记忆位置为导向的改进乌鸦搜索算法
10
作者 张宁 王勇 张伟 《小型微型计算机系统》 CSCD 北大核心 2024年第5期1089-1098,共10页
为了克服乌鸦搜索算法搜索能力弱、易陷入局部最优之不足,提出新的以优秀个体记忆位置为导向的改进乌鸦搜索算法(EICSA):基于个体贮藏食物量之多少,种群中多数个体划归为普通个体、少数贮藏食物量较多的个体划归为优秀个体.优秀个体只... 为了克服乌鸦搜索算法搜索能力弱、易陷入局部最优之不足,提出新的以优秀个体记忆位置为导向的改进乌鸦搜索算法(EICSA):基于个体贮藏食物量之多少,种群中多数个体划归为普通个体、少数贮藏食物量较多的个体划归为优秀个体.优秀个体只在其贮藏食物的巢穴附近开展局部搜索活动.多数普通个体以优秀个体贮藏食物之巢穴为导向,在算法前期以较大步长进行全局探索,保持了种群的多样性;算法后期则以较短步长进行局部开发,使算法的全局探索能力和局部开发能力均得到了增强.通过12个基准函数和3个工程应用问题的数值实验,结果表明EICSA的全局优化能力得到了明显提高,在函数和工程应用问题优化中具有较快的全局收敛速度、较好的优化精度和稳定性. 展开更多
关键词 乌鸦搜索算法(csa) 智能优化 优秀个体 普通个体 工程约束优化问题
下载PDF
用户特征聚类和ICSA-SVR台区负荷预测 被引量:3
11
作者 滕永兴 杨霖 +2 位作者 钟睿君 闵诚 李祺 《中国测试》 CAS 北大核心 2022年第7期107-113,共7页
为提高配电网负荷预测精度,提出一种将模糊C均值(FCM)聚类与改进乌鸦搜索算法(ICSA)优化支持向量回归机(SVR)相结合的低压台区负荷预测模型。利用FCM算法对台区用户用电特征进行提取和聚类,消除用电行为特性差异对预测精度的影响,并构建... 为提高配电网负荷预测精度,提出一种将模糊C均值(FCM)聚类与改进乌鸦搜索算法(ICSA)优化支持向量回归机(SVR)相结合的低压台区负荷预测模型。利用FCM算法对台区用户用电特征进行提取和聚类,消除用电行为特性差异对预测精度的影响,并构建ICSA-SVR模型,对各类用户的用电负荷进行回归预测,进而叠加得到台区负荷预测结果。结果显示,台区内不同类型用户之间的用电特性差异较大,可分冬季单峰型、夏季单峰型和冬夏双峰型三类,各台区负荷呈现不同的季节性波动;该方法能够明显提升台区负荷预测精度,预测结果可对电力生产运营提供指导。 展开更多
关键词 低压台区 负荷预测 特征聚类 乌鸦搜索算法 支持向量回归
下载PDF
种群熵竞争粒子群算法
12
作者 王霞 王卓然 +1 位作者 张珊 王勇 《计算机工程与应用》 CSCD 北大核心 2024年第20期96-115,共20页
为进一步提高竞争粒子群优化算法的收敛性和求解精度,提出一种种群熵竞争粒子群算法(population entropy competitive particle swarm optimization algorithm,CSOPE);提出非线性惯性权重调整策略,以均衡粒子的全局勘探能力和局部开采能... 为进一步提高竞争粒子群优化算法的收敛性和求解精度,提出一种种群熵竞争粒子群算法(population entropy competitive particle swarm optimization algorithm,CSOPE);提出非线性惯性权重调整策略,以均衡粒子的全局勘探能力和局部开采能力;提出一种基于熵模型的种群状态检测策略,根据种群的标准化四分位差和标准化中位数差计算种群熵,通过相邻两代种群的熵值之差监测种群状态,当种群处于收敛状态时,对赢家粒子利用灰狼搜索进行局部开采,以提高算法的收敛精度。在CEC2008和CEC2013共21个测试函数上将所提算法与其他8种优化算法进行对比,实验结果表明,CSOPE算法的求解精度和收敛性得到了显著提高。将CSOPE算法应用到无线传感器网络节点定位问题,结果表明CSOPE算法具有较高的定位精度。 展开更多
关键词 竞争粒子群算法 种群状态 种群熵 惯性权重 灰狼搜索
下载PDF
改进秃鹰搜索和K均值混合迭代的点云简化算法
13
作者 牛宏侠 李富丽 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第2期172-183,共12页
针对激光雷达的固有特性和复杂环境易造成点云噪声和冗余点云,以及传统点云简化算法忽略了点云固有特征等问题,提出了一种基于改进秃鹰搜索和K均值聚类(KMC)混合迭代的点云简化算法(IBESSA)。首先,通过秃鹰搜索(BES)算法迭代阶段的竞争... 针对激光雷达的固有特性和复杂环境易造成点云噪声和冗余点云,以及传统点云简化算法忽略了点云固有特征等问题,提出了一种基于改进秃鹰搜索和K均值聚类(KMC)混合迭代的点云简化算法(IBESSA)。首先,通过秃鹰搜索(BES)算法迭代阶段的竞争融合(CFBES),提高其收敛速度和优化精度;其次,通过CFBES和KMC算法的混合迭代,实现了点云数据的聚类;然后,在k近邻(k-NN)实现点云簇密度估计的基础上,结合香农熵实现点云信息量化;最后,删除信息量化值小于阈值的聚类簇,完成点云数据简化。使用UCI国际标准数据集和斯坦福点云数据集分别对CFBES-KMC算法的聚类效果及点云的简化效果进行验证,结果表明:与改进飞蛾扑火的K均值交叉迭代、K-means++、模糊C均值聚类算法的聚类效果相比,CFBES-KMC算法的聚类准确率分别提高了1.02%、12.31%、14.72%;在斯坦福点云数据集上,IBESSA算法在有效滤除冗余点云的基础上保留了原本点云的细节和形状特征,不失为一种高效的点云简化算法。 展开更多
关键词 秃鹰搜索算法 竞争融合 K均值聚类混合迭代 香农熵 点云简化
下载PDF
An Improved Lung Cancer Segmentation Based on Nature-Inspired Optimization Approaches
14
作者 Shazia Shamas Surya Narayan Panda +4 位作者 Ishu Sharma Kalpna Guleria Aman Singh Ahmad Ali AlZubi Mallak Ahmad AlZubi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1051-1075,共25页
The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical image... The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical imageprocessing while focusing on lung cancer Computed Tomography (CT) images. In this context, the paper proposesan improved lung cancer segmentation technique based on the strengths of nature-inspired approaches. Thebetter resolution of CT is exploited to distinguish healthy subjects from those who have lung cancer. In thisprocess, the visual challenges of the K-means are addressed with the integration of four nature-inspired swarmintelligent techniques. The techniques experimented in this paper are K-means with Artificial Bee Colony (ABC),K-means with Cuckoo Search Algorithm (CSA), K-means with Particle Swarm Optimization (PSO), and Kmeanswith Firefly Algorithm (FFA). The testing and evaluation are performed on Early Lung Cancer ActionProgram (ELCAP) database. The simulation analysis is performed using lung cancer images set against metrics:precision, sensitivity, specificity, f-measure, accuracy,Matthews Correlation Coefficient (MCC), Jaccard, and Dice.The detailed evaluation shows that the K-means with Cuckoo Search Algorithm (CSA) significantly improved thequality of lung cancer segmentation in comparison to the other optimization approaches utilized for lung cancerimages. The results exhibit that the proposed approach (K-means with CSA) achieves precision, sensitivity, and Fmeasureof 0.942, 0.964, and 0.953, respectively, and an average accuracy of 93%. The experimental results prove thatK-meanswithABC,K-meanswith PSO,K-meanswith FFA, andK-meanswithCSAhave achieved an improvementof 10.8%, 13.38%, 13.93%, and 15.7%, respectively, for accuracy measure in comparison to K-means segmentationfor lung cancer images. Further, it is highlighted that the proposed K-means with CSA have achieved a significantimprovement in accuracy, hence can be utilized by researchers for improved segmentation processes of medicalimage datasets for identifying the targeted region of interest. 展开更多
关键词 LESION lung cancer segmentation medical imaging META-HEURISTIC Artificial Bee Colony(ABC) Cuckoo search algorithm(csa) Particle Swarm Optimization(PSO) Firefly algorithm(FFA) SEGMENTATION
下载PDF
基于RS-CSA-ELM的WSN节点故障诊断 被引量:1
15
作者 余正军 《计算机系统应用》 2021年第3期221-226,共6页
为及时发现WSN节点故障隐患,准确掌握WSN运行状态,本文利用粗糙集理论属性约简算法(简称RS)对WSN节点故障属性进行约简,以最优的故障属性决策表重构训练样本数据集,作为极限学习机(Extreme Learning Machine, ELM)神经网络的输入,建立... 为及时发现WSN节点故障隐患,准确掌握WSN运行状态,本文利用粗糙集理论属性约简算法(简称RS)对WSN节点故障属性进行约简,以最优的故障属性决策表重构训练样本数据集,作为极限学习机(Extreme Learning Machine, ELM)神经网络的输入,建立一个数据驱动的WSN节点故障断模型.采用乌鸦搜索算法(Crow Search Algorithm, CSA)优化ELM神经网络的输入权值和隐含层阀值,改善网络参数随机生成带来的ELM模型输出不稳定、分类精度偏低的问题.通过对RS-GA-ELM模型进行仿真分析.结果表明, RS-GA-ELM模型能够在可靠性不同的数据集中,保持较高的故障诊断效率,符合WSN节点故障诊断的需求. 展开更多
关键词 故障诊断 乌鸦搜索算法 极限学习机 WSN 粗糙集理论
下载PDF
自抗扰与改进ESO并联的永磁同步电机矢量控制 被引量:3
16
作者 沈威 冉全 赵世平 《组合机床与自动化加工技术》 北大核心 2023年第9期77-81,共5页
为提高永磁同步电机的控制性能,设计了一种自抗扰控制器与改进ESO并联的永磁同步电机矢量控制系统。首先,利用光滑的非线性函数改进传统的ESO,提高其对信号的平滑处理能力,并将改进的ESO与ADRC并联,提高信号处理的准确率;然后,将系统的... 为提高永磁同步电机的控制性能,设计了一种自抗扰控制器与改进ESO并联的永磁同步电机矢量控制系统。首先,利用光滑的非线性函数改进传统的ESO,提高其对信号的平滑处理能力,并将改进的ESO与ADRC并联,提高信号处理的准确率;然后,将系统的电磁转矩与负载误差、转速误差与时间积分主动补偿到电流环,提高系统的响应速度和抗干扰性;最后,利用乌鸦算法优化ADRC的参数,减少人工参数整定的复杂度。Simulink中的仿真结果表明,改进系统比ADRC和PI控制具有更好的鲁棒性和稳定性。 展开更多
关键词 永磁同步电机 自抗扰控制 参数整定 乌鸦算法
下载PDF
基于自适应调整哈里斯鹰优化算法求解机器人路径规划问题 被引量:3
17
作者 黄霖 符强 童楠 《计算机应用》 CSCD 北大核心 2023年第12期3840-3847,共8页
针对启发式算法在机器人路径规划过程中存在路径长度不稳定和易陷入局部极小点的问题,提出一种基于自适应调整哈里斯鹰优化(AAHHO)算法。首先,利用收敛因子调整策略,调节全局搜索阶段和局部搜索阶段的平衡,同时利用自然常数为底数,提高... 针对启发式算法在机器人路径规划过程中存在路径长度不稳定和易陷入局部极小点的问题,提出一种基于自适应调整哈里斯鹰优化(AAHHO)算法。首先,利用收敛因子调整策略,调节全局搜索阶段和局部搜索阶段的平衡,同时利用自然常数为底数,提高搜索效率和收敛精度;其次,在全局搜索阶段,采用精英合作引导搜索策略,通过3个精英哈里斯鹰合作引导其他个体更新位置以提高搜索性能,通过3个最优位置加强种群间的信息交流;最后,通过模拟种内竞争策略增强哈里斯鹰跳出局部最优的能力。函数测试和机器人路径规划对比实验结果表明,所提算法无论是函数测试还是机器人路径规划都优于IHHO(Improve Harris Hawk Optimization)和CHHO(Chaotic Harris Hawk Optimization)等对比算法,对于求解机器人的路径规划具有较好的有效性、可行性和稳定性。 展开更多
关键词 机器人 路径规划 哈里斯鹰优化算法 收敛因子调整 精英合作引导搜索 种内竞争
下载PDF
基于ISSA-BP神经网络的激光甲烷传感器温度补偿研究 被引量:4
18
作者 邹翔 殷松峰 +1 位作者 程跃 刘云龙 《光子学报》 EI CAS CSCD 北大核心 2023年第8期97-108,共12页
为有效提高宽温应用环境下激光甲烷传感器的探测精度,提出基于改进麻雀搜索算法优化BP神经网络的温度补偿模型,并利用实测大规模数据集进行验证。在模型框架上,提出具有全局寻优能力的ISSA-BP算法:利用准反射学习策略初始化麻雀种群以... 为有效提高宽温应用环境下激光甲烷传感器的探测精度,提出基于改进麻雀搜索算法优化BP神经网络的温度补偿模型,并利用实测大规模数据集进行验证。在模型框架上,提出具有全局寻优能力的ISSA-BP算法:利用准反射学习策略初始化麻雀种群以提高麻雀种群多样性,引入变色龙算法、Levy飞行策略和人工兔扰动策略分别对探索者位置、反捕食者位置和每代麻雀个体位置进行更新,避免算法陷入局部最优。在数据上,通过建立不同温度、不同浓度的传感器大规模实验数据集,提升温度补偿模型的训练效果并减小模型的预测误差。在-20℃~65℃温度范围内利用15800组传感器测量数据分别对BP、PSO-BP、SSA-BP和ISSA-BP四种模型进行对比。结果表明,基于ISSA-BP神经网络的温度补偿模型预测值最大相对误差仅为0.52%,比BP、PSO-BP和SSA-BP模型分别减少了7.70%、2.46%和0.74%,MAE、MAPE、RMSE和RE量化评价指标均远优于BP、PSO-BP和SSA-BP模型。本文算法可大幅提高宽温应用环境下激光甲烷传感器探测精度,对提升激光甲烷传感器的环境适用性具有重要的参考意义。 展开更多
关键词 激光甲烷传感器 温度补偿 麻雀搜索算法 准反射学习 变色龙算法 人工兔优化算法
下载PDF
基于乌鸦搜索算法的云计算用户任务调度仿真
19
作者 唐雯炜 李志敏 《计算机仿真》 北大核心 2023年第11期331-335,共5页
大多数网络应用和任务均在云端部署,由于云资源的动态异构性,用户任务的调度过程易受网络装置、计算机CPU性能、信号强度等问题的干扰。提出基于乌鸦搜索算法的云计算用户任务调度方法。利用主成分分析法对云计算用户数据完成降维处理,... 大多数网络应用和任务均在云端部署,由于云资源的动态异构性,用户任务的调度过程易受网络装置、计算机CPU性能、信号强度等问题的干扰。提出基于乌鸦搜索算法的云计算用户任务调度方法。利用主成分分析法对云计算用户数据完成降维处理,避免冗余信息的干扰。基于此,构建任务模型,通过乌鸦搜索法更新适应度函数锁定最优目标函数,获取任务模型的最优解,实现基于乌鸦搜索算法的云计算用户任务调度。仿真结果表明,在100组云计算用户任务的调度中,研究方法的平均执行时间为78.3ms,成本系数低于0.4,综合服务质量的波动范围为0.8~1.0。 展开更多
关键词 云计算用户 主成分分析法 数据降维 乌鸦搜索算法 调度模型
下载PDF
基于改进注意力机制的LSTM水位预测模型研究 被引量:1
20
作者 马飞 涂振宇 +3 位作者 朱松挺 相敏月 孙逸飞 方强 《江西水利科技》 2023年第3期162-166,175,共6页
为了进一步提高水位预测的准确性,本文提出一种融入改进注意力机制的长短期记忆网络(Long Short Time Memory,LSTM)预测模型。该模型将输入序列拆分为时间序列和特征序列,在LSTM网络模型前引入注意力机制对两个序列分别进行注意力计算,... 为了进一步提高水位预测的准确性,本文提出一种融入改进注意力机制的长短期记忆网络(Long Short Time Memory,LSTM)预测模型。该模型将输入序列拆分为时间序列和特征序列,在LSTM网络模型前引入注意力机制对两个序列分别进行注意力计算,然后再进行融合,LSTM网络能够根据重要程度自适应地选择最重要的输入特征,注意力机制层的参数通过竞争随机搜索算法获取,从而进一步增强了模型的鲁棒性。最后在鄱阳湖的水位数据上进行预测实验,结果表明:相对于支持向量回归(SVR)、LSTM等模型,本文提出基于改进注意力机制的LSTM模型具有更好的预测精度,可为水位预测和水资源的精准调度提供技术支持。 展开更多
关键词 水位预测 预测模型 长短期记忆网络 注意力机制 竞争随机搜索
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部