期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于MCCV奇异样本筛选和CARS变量选择法对蜂蜜pH值和酸度的近红外光谱检测 被引量:17
1
作者 李水芳 单杨 +3 位作者 范伟 尹永 周孜 李高阳 《食品科学》 EI CAS CSCD 北大核心 2011年第8期182-185,共4页
采用Norris平滑加一阶微分数据预处理,蒙特卡洛交互验证(MCCV)的奇异样本筛选和CARS(competitiveadaptive reweighted sampling)变量选择法,用Kennard-Stone(KS)法划分训练集和预测集,偏最小二乘(PLS)回归近红外光谱建模,对蜂蜜pH值和... 采用Norris平滑加一阶微分数据预处理,蒙特卡洛交互验证(MCCV)的奇异样本筛选和CARS(competitiveadaptive reweighted sampling)变量选择法,用Kennard-Stone(KS)法划分训练集和预测集,偏最小二乘(PLS)回归近红外光谱建模,对蜂蜜pH值和酸度进行定量分析。pH值和酸度校正模型的交互验证决定系数(Rcv2)、交互验证均方差(RMSECV)、预测集决定系数(Rp2)、预测均方差(RMSEP)分别为0.8516和0.8723、0.1214和2.1734、0.8205和0.8250、0.1196和2.4674。结果表明,该方法适于蜂蜜pH值的测定,而不宜用于测定蜂蜜酸度。 展开更多
关键词 近红外光谱 蒙特卡洛交互验证的奇异样本筛选 CARS变量选择 蜂蜜 PH值 酸度
下载PDF
基于CARS-MIV-SVR的库尔勒香梨可溶性固体含量预测方法 被引量:5
2
作者 朱晓琳 李光辉 张萌 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第11期3547-3552,共6页
为了实现库尔勒香梨依据可溶性固体含量(SSC)分级定等和按质论价,推动采后处理向标准化、产业化方向健康发展,利用高光谱成像技术研究出了一种快速、有效、无损检测库尔勒香梨SSC的方法。以表面无损伤的157个库尔勒香梨作为研究样本,应... 为了实现库尔勒香梨依据可溶性固体含量(SSC)分级定等和按质论价,推动采后处理向标准化、产业化方向健康发展,利用高光谱成像技术研究出了一种快速、有效、无损检测库尔勒香梨SSC的方法。以表面无损伤的157个库尔勒香梨作为研究样本,应用高光谱成像采集系统获取400~1 000nm波长范围内高光谱图像并用ENVI5.3软件提取感兴趣区域(ROI),获得高光谱数据。采用Kennard-Stone(KS)样本集划分方法将全部样本按照2∶1的比例划分为校正集(105)和预测集(52)。对比标准变量变换(SNV)、多元散射校正(MSC)、一阶导数(FD)和二阶导数(SD)等数据预处理方法对建模精度的影响,最终选用SNV方法对光谱曲线进行平滑去噪。该研究提出竞争性自适应重加权算法与平均影响值算法的组合算法(CARS-MIV)选择特征波长。在竞争性自适应重加权算法(CARS)方法中,建模样本由蒙特卡罗算法随机选择生成,变量回归系数会随之发生变化,因而回归系数的绝对值不能全面反映变量重要性,从而影响模型检测精度。为降低这种影响,应用平均影响值(MIV)算法对选出的自变量进行二次筛选,筛选出相关性较大的变量用以建模分析,并与CARS、连续投影算法(SPA)、蒙特卡罗无信息变量消除算法(MCUVE)等经典特征波长选择算法进行比较。最后分别以全波长(FS)光谱信息和四种特征波长选择方法得出的光谱信息作为输入矢量,应用支持向量回归(SVR)建立库尔勒香梨可溶性固体含量定量预测数学模型,以校正集相关系数(Rc)、校正集均方根误差(RMSEC)、预测集相关系数(Rp)和预测集均方根误差(RMSEP)四个参数来评估模型的预测精度。比较分析发现,CARS-MIV-SVR模型效果最佳,校正集相关系数(Rc)为0.985 94,预测集相关系数(Rp)达到0.946 31,校正集和预测集均方根误差分别为0.185 85和0.403 33。结果证明:CARS-MIV特征波长选择方法能够有效增强库尔勒香梨光谱数据特征波长选择的稳定性和精确性,提高模型的预测精度。利用高光谱技术结合CARS-MIV-SVR模型能够满足库尔勒香梨可溶性固体含量测定需求,实现库尔勒香梨的分级定等和按质论价。 展开更多
关键词 光谱分析 可溶性固体含量 变量选择 竞争性自适应重加权算法与平均响应值算法的组合 支持向量回归
下载PDF
基于机器学习算法的湖滨绿洲土壤电导率高光谱估算模型 被引量:2
3
作者 孟珊 李新国 焦黎 《土壤通报》 CAS CSCD 北大核心 2023年第2期286-294,共9页
【目的】为湖滨绿洲土壤高光谱估算土壤电导率值提供方法支持,实现区域土壤盐分快速估测。【方法】利用实测的土壤电导率值与土壤高光谱数据联合分析,采用竞争自适应重加权采样(CARS)、连续投影算法(SPA)、遗传算法(GA)筛选土壤电导率... 【目的】为湖滨绿洲土壤高光谱估算土壤电导率值提供方法支持,实现区域土壤盐分快速估测。【方法】利用实测的土壤电导率值与土壤高光谱数据联合分析,采用竞争自适应重加权采样(CARS)、连续投影算法(SPA)、遗传算法(GA)筛选土壤电导率的特征波段,并基于全波段及特征波段构建BP神经网络(BPNN)、支持向量机(SVM)、极限学习机(ELM)三种机器学习算法模型,引入偏最小二乘模型(PLSR)进行对照,比较其模型精度。【结果】研究区土壤电导率值变化范围0.02~17.22 mS cm^(−1),平均值为2.61 mS cm^(−1),变异系数为134.87%,呈现强变异性;CARS、SPA、GA算法筛选的特征波段将建模输入量分别压缩至全波段数量的0.87%、1.68%、0.70%,减少建模输入量,提升建模速率,变量方法的选择CARS>SPA>GA;三种机器学习算法模型均优于PLSR模型,决定系数(R^(2))平均增加20.57%,相对分析误差(RPD)平均增加17.84%,土壤电导率高光谱估算模型以CARS-SVM最优,训练集与验证集R2分别为0.76和0.75,RMSE分别为1.79和1.68 mS cm^(−1),RPD分别为2.04和2.00。土层深度20~30 cm的土壤电导率高光谱估算模型精度最高,训练集与验证集R2分别为0.83和0.84,RMSE分别1.37和1.77 mS cm^(−1),RPD分别为2.41和2.50。【结论】基于CARS-SVM的土壤电导率高光谱估算模型精度高,估算能力最优,可以为湖滨绿洲土壤电导率估算提供科学参考。 展开更多
关键词 土壤电导率值 竞争自适应重加权采样 连续投影算法 遗传算法 机器学习算法 高光谱估算模型
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部