期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
New results on global exponential stability of competitive neural networks with different time scales and time-varying delays 被引量:1
1
作者 崔宝同 陈君 楼旭阳 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第5期1670-1677,共8页
This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, som... This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, some sufficient conditions are presented for global exponential stability of delay competitive neural networks with different time scales. These conditions obtained have important leading significance in the designs and applications of global exponential stability for competitive neural networks. Finally, an example with its simulation is provided to demonstrate the usefulness of the proposed criteria. 展开更多
关键词 competitive neural network different time scale global exponential stability delay
下载PDF
Improved Exponential Stability Criteria for Recurrent Neural Networks with Time-varying Discrete and Distributed Delays 被引量:4
2
作者 Yuan-Yuan Wu Tao Li Yu-Qiang Wu 《International Journal of Automation and computing》 EI 2010年第2期199-204,共6页
In this paper, the problem of the global exponential stability analysis is investigated for a class of recurrent neural networks (RNNs) with time-varying discrete and distributed delays. Due to a novel technique whe... In this paper, the problem of the global exponential stability analysis is investigated for a class of recurrent neural networks (RNNs) with time-varying discrete and distributed delays. Due to a novel technique when estimating the upper bound of the derivative of Lyapunov functional, we establish new exponential stability criteria in terms of LMIs. It is shown that the obtained criteria can provide less conservative results than some existing ones. Numerical examples are given to show the effectiveness of the proposed results. 展开更多
关键词 neural networks time-varying delay exponential stability linear matrix inequalities (LMIs).
下载PDF
A new result on global exponential robust stability of neural networks with time-varying delays 被引量:4
3
作者 Jinliang SHAO Tingzhu HUANG 《控制理论与应用(英文版)》 EI 2009年第3期315-320,共6页
In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global e... In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global exponential robust stability is presented. It is shown that the obtained result is different from or improves some existing ones reported in the literatures. Finally, some numerical examples and a simulation are given to show the effectiveness of the obtained result. 展开更多
关键词 neural networks time-varying delays Global exponential robust stability
下载PDF
DYNAMICS OF NEW CLASS OF HOPFIELD NEURAL NETWORKS WITH TIME-VARYING AND DISTRIBUTED DELAYS 被引量:3
4
作者 Adnene ARBI Farouk CHERIF +1 位作者 Chaouki AOUITI Abderrahmen TOUATI 《Acta Mathematica Scientia》 SCIE CSCD 2016年第3期891-912,共22页
In this paper, we investigate the dynamics and the global exponential stability of a new class of Hopfield neural network with time-varying and distributed delays. In fact, the properties of norms and the contraction ... In this paper, we investigate the dynamics and the global exponential stability of a new class of Hopfield neural network with time-varying and distributed delays. In fact, the properties of norms and the contraction principle are adjusted to ensure the existence as well as the uniqueness of the pseudo almost periodic solution, which is also its derivative pseudo almost periodic. This results are without resorting to the theory of exponential dichotomy. Furthermore, by employing the suitable Lyapunov function, some delayindependent sufficient conditions are derived for exponential convergence. The main originality lies in the fact that spaces considered in this paper generalize the notion of periodicity and almost periodicity. Lastly, two examples are given to demonstrate the validity of the proposed theoretical results. 展开更多
关键词 delayed functional differential equations neural networks pseudo-almost peri- odic solution global exponential stability time-varying and distributed delays fixed point theorem
下载PDF
Passivity analysis for uncertain stochastic neural networks with discrete interval and distributed time-varying delays 被引量:3
5
作者 P.Balasubramaniam G.Nagamani 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期688-697,共10页
The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the ... The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the delay is assumed to be time-varying and belongs to a given interval,which means that the lower and upper bounds of interval time-varying delays are available.By constructing proper Lyapunov-Krasovskii functional and employing a combination of the free-weighting matrix method and stochastic analysis technique,new delay-dependent passivity conditions are derived in terms of linear matrix inequalities(LMIs).Finally,numerical examples are given to show the less conservatism of the proposed conditions. 展开更多
关键词 linear matrix inequality(LMI) stochastic neural network PASSIVITY interval time-varying delay Lyapunov method.
下载PDF
New results on stability criteria for neural networks with time-varying delays 被引量:2
6
作者 O.M.Kwon J.W.Kwon S.H.Kim 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第5期163-173,共11页
In this paper, the problem of stability analysis for neural networks with time-varying delays is considered. By constructing a new augmented Lyapunov-Krasovskii's functional and some novel analysis techniques, improv... In this paper, the problem of stability analysis for neural networks with time-varying delays is considered. By constructing a new augmented Lyapunov-Krasovskii's functional and some novel analysis techniques, improved delaydependent criteria for checking the stability of the neural networks are established. The proposed criteria are presented in terms of linear matrix inequalities (LMIs) which can be easily solved and checked by various convex optimization algorithms. Two numerical examples are included to show the superiority of our results. 展开更多
关键词 neural networks time-varying delays STABILITY Lyapunov method
下载PDF
H∞ synchronization of chaotic neural networks with time-varying delays 被引量:1
7
作者 O. M. Kwon M. J. Park +2 位作者 Ju H. Park S. M. Lee E. J. Cha 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期244-252,共9页
In this paper, we investigate the problem of H∞ synchronization for chaotic neural networks with time-varying delays. A new model of the networks with disturbances in both master and slave systems is presented. By co... In this paper, we investigate the problem of H∞ synchronization for chaotic neural networks with time-varying delays. A new model of the networks with disturbances in both master and slave systems is presented. By constructing a suitable Lyapunov–Krasovskii functional and using a reciprocally convex approach, a novel H∞ synchronization criterion for the networks concerned is established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed method. 展开更多
关键词 chaotic neural networks time-varying delays H∞ synchronization Lyapunov method
下载PDF
Stability Analysis of Cohen-Grossberg Neural Networks with Time-Varying Delays 被引量:1
8
作者 刘艳青 唐万生 《Transactions of Tianjin University》 EI CAS 2007年第1期12-17,共6页
The global exponential stability of Cohen-Grossberg neural networks with time-varying delays is studied. By constructing several suitable Lyapunov functionals and utilizing differential in-equality techniques, some su... The global exponential stability of Cohen-Grossberg neural networks with time-varying delays is studied. By constructing several suitable Lyapunov functionals and utilizing differential in-equality techniques, some sufficient criteria for the global exponential stability and the exponential convergence rate of the equilibrium point of the system are obtained. The criteria do not require the activation functions to be differentiable or monotone nondecreasing. Some stability results from previous works are extended and improved. Comparisons are made to demonstrate the advantage of our results. 展开更多
关键词 Cohen-Grossberg neural networks time-varying delay equilibrium point global exponential stability convergence rate
下载PDF
Improved results on state estimation for neural networks with time-varying delays 被引量:1
9
作者 Tao LI 1 , Shumin FEI 2 , Hong LU 2 (1.School of Instrument Science & Engineering, Southeast University, Nanjing Jiangsu 210096, China 2.Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Southeast University, Nanjing Jiangsu 210096, China) 《控制理论与应用(英文版)》 EI 2010年第2期215-221,共7页
In this paper, some improved results on the state estimation problem for recurrent neural networks with both time-varying and distributed time-varying delays are presented. Through available output measurements, an im... In this paper, some improved results on the state estimation problem for recurrent neural networks with both time-varying and distributed time-varying delays are presented. Through available output measurements, an improved delay-dependent criterion is established to estimate the neuron states such that the dynamics of the estimation error is globally exponentially stable, and the derivative of time-delay being less than 1 is removed, which generalize the existent methods. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed results. 展开更多
关键词 Exponential state estimator Recurrent neural networks Exponential stability time-varying delays Linear matrix inequality (LMI)
下载PDF
Global Exponential Stability of Almost Periodic Solution of Cellular Neural Networks with Time-Varying Delays 被引量:2
10
作者 Jing Liu Pei-Yong Zhu 《Journal of Electronic Science and Technology of China》 2007年第3期238-242,共5页
In this paper, global exponential stability of almost periodic solution of cellular neural networks with time-varing delays (CNNVDs) is considered. By using the methods of the topological degree theory and generaliz... In this paper, global exponential stability of almost periodic solution of cellular neural networks with time-varing delays (CNNVDs) is considered. By using the methods of the topological degree theory and generalized Halanay inequality, a few new applicable criteria are established for the existence and global exponential stability of almost periodic solution. Some previous results are improved and extended in this letter and one example is given to illustrate the effectiveness of the new results. 展开更多
关键词 Almost periodic solution cellular neural networks with time-varying delays (CNNVDs) global exponential stability topological degree theory.
下载PDF
Synchronization of stochastically hybrid coupled neural networks with coupling discrete and distributed time-varying delays
11
作者 唐漾 钟恢凰 方建安 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第11期4080-4090,共11页
A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distri... A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distributed timevarying delay. All the coupling terms are subjected to stochastic disturbances described in terms of Brownian motion, which reflects a more realistic dynamical behaviour of coupled systems in practice. Based on a simple adaptive feedback controller and stochastic stability theory, several sufficient criteria are presented to ensure the synchronization of linearly stochastically coupled complex networks with coupling mixed time-varying delays. Finally, numerical simulations illustrated by scale-free complex networks verify the effectiveness of the proposed controllers. 展开更多
关键词 stochastically hybrid coupling discrete and distributed time-varying delays complex dynamical networks chaotic neural networks
下载PDF
New Delay-dependent Global Asymptotic Stability Condition for Hopfield Neural Networks with Time-varying Delays
12
作者 Guang-Deng Zong Jia Liu 《International Journal of Automation and computing》 EI 2009年第4期415-419,共5页
This paper deals with the global asymptotic stability problem for Hopfield neural networks with time-varying delays. By resorting to the integral inequality and constructing a Lyapunov-Krasovskii functional, a novel d... This paper deals with the global asymptotic stability problem for Hopfield neural networks with time-varying delays. By resorting to the integral inequality and constructing a Lyapunov-Krasovskii functional, a novel delay-dependent condition is established to guarantee the existence and global asymptotic stability of the unique equilibrium point for a given delayed Hopfield neural network. This criterion is expressed in terms of linear matrix inequalities (LMIs), which can be easily checked by utilizing the recently developed algorithms for solving LMIs. Examples are provided to demonstrate the effectiveness and reduced conservatism of the proposed condition. 展开更多
关键词 Global asymptotic stability Hopfield neural networks linear matrix inequality (LMI) time-varying delays Lyapunov-Krasovskii functional.
下载PDF
Delay-Dependent Exponential Stability Criterion for BAM Neural Networks with Time-Varying Delays
13
作者 Wei-Wei Su Yi-Ming Chen 《Journal of Electronic Science and Technology of China》 2008年第1期66-69,共4页
By employing the Lyapunov stability theory and linear matrix inequality(LMI)technique,delay-dependent stability criterion is derived to ensure the exponential stability of bi-directional associative memory(BAM)neu... By employing the Lyapunov stability theory and linear matrix inequality(LMI)technique,delay-dependent stability criterion is derived to ensure the exponential stability of bi-directional associative memory(BAM)neural networks with time-varying delays.The proposed condition can be checked easily by LMI control toolbox in Matlab.A numerical example is given to demonstrate the effectiveness of our results. 展开更多
关键词 Bi-directional associative memory(BAM) neural networks delay-dependent exponentialstability linear matrix inequality (LMI) lyapunovstability theory time-varying delays.
下载PDF
New Robust Exponential Stability Analysis for Uncertain Neural Networks with Time-varying Delay 被引量:3
14
作者 Yong-Gang Chen Wei-Ping Bi 《International Journal of Automation and computing》 EI 2008年第4期395-400,共6页
In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new... In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional,some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs).Numerical examples are presented to show the effectiveness of the proposed method. 展开更多
关键词 Robust exponential stability uncertain neural networks time-varying delay Lyapunov functional method linear matrix inequalities (LMIs).
下载PDF
Stability analysis of Markovian jumping stochastic Cohen Grossberg neural networks with discrete and distributed time varying delays 被引量:2
15
作者 M.Syed Ali 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期131-137,共7页
In this paper, the global asymptotic stability problem of Markovian jumping stochastic Cohen-Grossberg neural networks with discrete and distributed time-varying delays (MJSCGNNs) is considered. A novel LMI-based st... In this paper, the global asymptotic stability problem of Markovian jumping stochastic Cohen-Grossberg neural networks with discrete and distributed time-varying delays (MJSCGNNs) is considered. A novel LMI-based stability criterion is obtained by constructing a new Lyapunov functional to guarantee the asymptotic stability of MJSCGNNs. Our results can be easily verified and they are also less restrictive than previously known criteria and can be applied to Cohen-Grossberg neural networks, recurrent neural networks, and cellular neural networks. Finally, the proposed stability conditions are demonstrated with numerical examples. 展开更多
关键词 Cohen-Grossberg neural networks global asymptotic stability linear matrix inequality Lyapunovfunctional time-varying delays
下载PDF
New Stability Criteria for Recurrent Neural Networks with a Time-varying Delay 被引量:2
16
作者 Hong-Bing Zeng Shen-Ping Xiao Bin Liu 《International Journal of Automation and computing》 EI 2011年第1期128-133,共6页
This paper deals with the stability of static recurrent neural networks (RNNs) with a time-varying delay. An augmented Lyapunov-Krasovskii functional is employed, in which some useful terms are included. Furthermore... This paper deals with the stability of static recurrent neural networks (RNNs) with a time-varying delay. An augmented Lyapunov-Krasovskii functional is employed, in which some useful terms are included. Furthermore, the relationship among the timevarying delay, its upper bound and their difierence, is taken into account, and novel bounding techniques for 1- τ(t) are employed. As a result, without ignoring any useful term in the derivative of the Lyapunov-Krasovskii functional, the resulting delay-dependent criteria show less conservative than the existing ones. Finally, a numerical example is given to demonstrate the effectiveness of the proposed methods. 展开更多
关键词 STABILITY recurrent neural networks (RNNs) time-varying delay delay-DEPENDENT augmented Lyapunov-Krasovskii functional.
下载PDF
Stability Analysis for Recurrent Neural Networks with Time-varying Delay 被引量:2
17
作者 Yuan-Yuan Wu Yu-Qiang Wu 《International Journal of Automation and computing》 EI 2009年第3期223-227,共5页
This paper is concerned with the stability analysis for static recurrent neural networks (RNNs) with time-varying delay. By Lyapunov functional method and linear matrix inequality technique, some new delay-dependent... This paper is concerned with the stability analysis for static recurrent neural networks (RNNs) with time-varying delay. By Lyapunov functional method and linear matrix inequality technique, some new delay-dependent conditions are established to ensure the asymptotic stability of the neural network. Expressed in linear matrix inequalities (LMIs), the proposed delay-dependent stability conditions can be checked using the recently developed algorithms. A numerical example is given to show that the obtained conditions can provide less conservative results than some existing ones. 展开更多
关键词 Static neural networks time-varying delay asymptotical stability delay-DEPENDENT linear matrix inequalities (LMIs).
下载PDF
Novel delay-dependent stability criteria for neural networks with interval time-varying delay
18
作者 王健安 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期174-180,共7页
The problem of delay-dependent asymptotic stability for neurM networks with interval time-varying delay is investigated. Based on the idea of delay decomposition method, a new type of Lyapunov Krasovskii functional is... The problem of delay-dependent asymptotic stability for neurM networks with interval time-varying delay is investigated. Based on the idea of delay decomposition method, a new type of Lyapunov Krasovskii functional is constructed. Several novel delay-dependent stability criteria are presented in terms of linear matrix inequality by using the Jensen integral inequality and a new convex combination technique. Numerical examples are given to demonstrate that the proposed method is effective and less conservative. 展开更多
关键词 neural networks interval time-varying delay delay-dependent stability convex combi-nation linear matrix inequality
下载PDF
Robust stability analysis for Markovian jumping stochastic neural networks with mode-dependent time-varying interval delay and multiplicative noise
19
作者 张化光 浮洁 +1 位作者 马铁东 佟绍成 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第8期3325-3336,共12页
This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise.... This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise. Based on the Lyapunov-Krasovskii functional and a stochastic analysis approach, some new delay-dependent sufficient conditions are obtained in the linear matrix inequality (LMI) format such that delayed MJSNNs are globally asymptotically stable in the mean-square sense for all admissible uncertainties. An important feature of the results is that the stability criteria are dependent on not only the lower bound and upper bound of delay for all modes but also the covariance matrix consisting of the correlation coefficient. Numerical examples are given to illustrate the effectiveness. 展开更多
关键词 mode-dependent time-varying interval delay multiplicative noise covariance matrix correlation coefficient Markovian jumping stochastic neural networks
下载PDF
Stability analysis of cellular neural networks with time-varying delay
20
作者 Wang Xingang1,4, Zhang Dongmei2 & Liu Jun3 1. Coll. of Information Engineering, Zhejiang Univ. of Technology, Hangzhou 310032, P. R. China 2. Coll. of Science, Zhejiang Univ. of Technology, Hangzhou 310032, P. R. China +1 位作者 3. Coll. of Science, Beihua Univ., Jilin 132000, P. R. China 4. School of Computer Engineering and Science, Shanghai Univ., Shanghai 200072, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期266-273,共8页
The global asymptotic stability of cellular neural networks with delays is investigated. Three kinds of time delays have been considered. New delay-dependent stability criteria are proposed and are formulated as the f... The global asymptotic stability of cellular neural networks with delays is investigated. Three kinds of time delays have been considered. New delay-dependent stability criteria are proposed and are formulated as the feasibility of some linear matrix inequalities, which can be checked easily by resorting to the recently developed interior-point algorithms. Based on the Finsler Lemma, it is theoretically proved that the proposed stability criteria are less conservative than some existing results. 展开更多
关键词 cellular neural networks time-varying delay integral inequality
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部