Complementary metal-oxide-semiconductor(CMOS) sensors can convert X-rays into detectable signals; therefore, they are powerful tools in X-ray detection applications. Herein, we explore the physics behind X-ray detecti...Complementary metal-oxide-semiconductor(CMOS) sensors can convert X-rays into detectable signals; therefore, they are powerful tools in X-ray detection applications. Herein, we explore the physics behind X-ray detection performed using CMOS sensors. X-ray measurements were obtained using a simulated positioner based on a CMOS sensor, while the X-ray energy was modified by changing the voltage, current, and radiation time. A monitoring control unit collected video data of the detected X-rays. The video images were framed and filtered to detect the effective pixel points(radiation spots).The histograms of the images prove there is a linear relationship between the pixel points and X-ray energy. The relationships between the image pixel points, voltage, and current were quantified, and the resultant correlations were observed to obey some physical laws.展开更多
A single Complementary Metal Oxide Semiconductor (CMOS) image sensor based on 0.35μm process along with its design and implementation is introduced in this paper. The pixel ar-chitecture of Active Pixel Sensor (APS) ...A single Complementary Metal Oxide Semiconductor (CMOS) image sensor based on 0.35μm process along with its design and implementation is introduced in this paper. The pixel ar-chitecture of Active Pixel Sensor (APS) is used in the chip,which comprises a 256×256 pixel array together with column amplifiers,scan array circuits,series interface,control logic and Analog-Digital Converter (ADC). With the use of smart layout design,fill factor of pixel cell is 43%. Moreover,a new method of Dynamic Digital Double Sample (DDDS) which removes Fixed Pattern Noise (FPN) is used. The CMOS image sensor chip is implemented based on the 0.35μm process of chartered by Multi-Project Wafer (MPW). This chip performs well as expected.展开更多
Radiation effects on complementary metal-oxide-semiconductor(CMOS) active pixel sensors(APS) induced by proton and γ-ray are presented. The samples are manufactured with the standards of 0.35 μm CMOS technology....Radiation effects on complementary metal-oxide-semiconductor(CMOS) active pixel sensors(APS) induced by proton and γ-ray are presented. The samples are manufactured with the standards of 0.35 μm CMOS technology. Two samples have been irradiated un-biased by 23 MeV protons with fluences of 1.43 × 10^11 protons/cm^2 and 2.14 × 10^11 protons/cm-2,respectively, while another sample has been exposed un-biased to 65 krad(Si) ^60Co γ-ray. The influences of radiation on the dark current, fixed-pattern noise under illumination, quantum efficiency, and conversion gain of the samples are investigated. The dark current, which increases drastically, is obtained by the theory based on thermal generation and the trap induced upon the irradiation. Both γ-ray and proton irradiation increase the non-uniformity of the signal, but the nonuniformity induced by protons is even worse. The degradation mechanisms of CMOS APS image sensors are analyzed,especially for the interaction induced by proton displacement damage and total ion dose(TID) damage.展开更多
Path recognition is an inevitable core technology in the development of tracking robot. In this paper,the path tracking system of tracking robot can be realized by image sensor module based on camera to obtain lane im...Path recognition is an inevitable core technology in the development of tracking robot. In this paper,the path tracking system of tracking robot can be realized by image sensor module based on camera to obtain lane image information,and then extract the path through visual servo. The whole system can be divided into seven modules: micro control unit( MCU) processor module,image acquisition module,debugging module,motor drive module,servo drive module,speed sensor module,and voltage conversion module.In image pre-processing part,there is an introduction of binarization processing and the median filtering to strengthen the image information. About recognition algorithm,three key variables which are changed in the movement state are discussed and there are also many auxiliary algorithms that help to improve the path recognition.The experiment can verify that the whole system can accurately abstract the black guide lines from the white track and make the robot moving fast and stable by following the road parameters and conditions.展开更多
探讨了低功耗设计在便携设备中的重要性,并结合互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)环形振荡器的设计从不同角度阐述低功耗设计的要点。首先,介绍了低功耗设计的概念、背景以及其在现代便携设备中的应...探讨了低功耗设计在便携设备中的重要性,并结合互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)环形振荡器的设计从不同角度阐述低功耗设计的要点。首先,介绍了低功耗设计的概念、背景以及其在现代便携设备中的应用。其次,讨论了动态功耗和静态功耗对电路的影响,提出相应的解决方法和优化措施。再次,从工艺调整和设计方法2个角度,详细介绍低功耗设计的方法。最后,结合具体的CMOS环形振荡器设计,展示了低功耗设计的实际应用和优势,为便携设备的高效、可靠运行提供了理论基础和技术支持。展开更多
针对智能车因单条引导线信息量少而引起的误识别问题,设计一种能自动识别和跟踪双边引导线的智能车系统。智能车以Freescale公司MC9S12XSl28作为核心控制器,利用COMS(Complementary Metal OxideSemiconductor)摄像头OV7620作为路径信息...针对智能车因单条引导线信息量少而引起的误识别问题,设计一种能自动识别和跟踪双边引导线的智能车系统。智能车以Freescale公司MC9S12XSl28作为核心控制器,利用COMS(Complementary Metal OxideSemiconductor)摄像头OV7620作为路径信息采集装置,对采集图像进行二值化处理、去噪操作和边缘检测后提取路径信息、进而准确地判别跑道的形状,为舵机和电机提供控制依据,以使小车平稳快速地行驶。同时,提出将行驶状态与赛道信息综合考虑的措施,并通过PID(Proportional Integral Differential)控制策略以及实验测试,实现了对各种典型跑道的优化处理,使高速行进中的智能车具有良好的转向调节能力和加减速响应能力。智能车可以在以白色为底面颜色,两边有黑色引导线的跑道上运行,克服了因单条引导线信息量少而引起的误识别问题。展开更多
磁场是太阳物理的第1观测量,当前太阳磁场观测研究正迈向大视场、高时空分辨率、高偏振测量精度以及空间观测的时代.中国首颗太阳观测卫星-先进天基太阳天文台(ASO-S)也配置了具有高时空分辨率、高磁场灵敏度的全日面矢量磁像仪(FMG)载...磁场是太阳物理的第1观测量,当前太阳磁场观测研究正迈向大视场、高时空分辨率、高偏振测量精度以及空间观测的时代.中国首颗太阳观测卫星-先进天基太阳天文台(ASO-S)也配置了具有高时空分辨率、高磁场灵敏度的全日面矢量磁像仪(FMG)载荷,针对FMG载荷的需求,讨论了大面阵、高帧频互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)图像传感器应用于太阳磁场观测的可行性.首先,基于滤光器型太阳磁像仪观测的原理,比较分析了目前CMOS图像传感器(可用的或是可选的两种快门模式)的特点,指出全局快门类型更适合FMG;其次搭建了CMOS传感器实验室测试系统,测量了CMOS图像传感器的像素增益及其分布规律;最后在怀柔太阳观测基地的全日面太阳望远镜上开展了实测验证,获得预期成果.在这些研究基础上,形成了FMG载荷探测器选型方向.展开更多
基金supported by the Plan for Science Innovation Talent of Henan Province(No.154100510007)the Natural and Science Foundation in Henan Province(No.162300410179)the Cultivation Foundation of Henan Normal University National Project(No.2017PL04)
文摘Complementary metal-oxide-semiconductor(CMOS) sensors can convert X-rays into detectable signals; therefore, they are powerful tools in X-ray detection applications. Herein, we explore the physics behind X-ray detection performed using CMOS sensors. X-ray measurements were obtained using a simulated positioner based on a CMOS sensor, while the X-ray energy was modified by changing the voltage, current, and radiation time. A monitoring control unit collected video data of the detected X-rays. The video images were framed and filtered to detect the effective pixel points(radiation spots).The histograms of the images prove there is a linear relationship between the pixel points and X-ray energy. The relationships between the image pixel points, voltage, and current were quantified, and the resultant correlations were observed to obey some physical laws.
文摘A single Complementary Metal Oxide Semiconductor (CMOS) image sensor based on 0.35μm process along with its design and implementation is introduced in this paper. The pixel ar-chitecture of Active Pixel Sensor (APS) is used in the chip,which comprises a 256×256 pixel array together with column amplifiers,scan array circuits,series interface,control logic and Analog-Digital Converter (ADC). With the use of smart layout design,fill factor of pixel cell is 43%. Moreover,a new method of Dynamic Digital Double Sample (DDDS) which removes Fixed Pattern Noise (FPN) is used. The CMOS image sensor chip is implemented based on the 0.35μm process of chartered by Multi-Project Wafer (MPW). This chip performs well as expected.
基金Project supported the National Natural Science Foundation of China(Grant No.11675259)the West Light Foundation of the Chinese Academy of Sciences(Grant Nos.XBBS201316,2016-QNXZ-B-2,and 2016-QNXZ-B-8)Young Talent Training Project of Science and Technology,Xinjiang,China(Grant No.qn2015yx035)
文摘Radiation effects on complementary metal-oxide-semiconductor(CMOS) active pixel sensors(APS) induced by proton and γ-ray are presented. The samples are manufactured with the standards of 0.35 μm CMOS technology. Two samples have been irradiated un-biased by 23 MeV protons with fluences of 1.43 × 10^11 protons/cm^2 and 2.14 × 10^11 protons/cm-2,respectively, while another sample has been exposed un-biased to 65 krad(Si) ^60Co γ-ray. The influences of radiation on the dark current, fixed-pattern noise under illumination, quantum efficiency, and conversion gain of the samples are investigated. The dark current, which increases drastically, is obtained by the theory based on thermal generation and the trap induced upon the irradiation. Both γ-ray and proton irradiation increase the non-uniformity of the signal, but the nonuniformity induced by protons is even worse. The degradation mechanisms of CMOS APS image sensors are analyzed,especially for the interaction induced by proton displacement damage and total ion dose(TID) damage.
基金National Natural Science Foundations of China(Nos.61272097,61305014)Natural Science Foundation of Shanghai,China(No.13ZR1455200)+6 种基金Innovation Programs of Shanghai Municipal Education Commission,China(Nos.12ZZ182,14ZZ156)Funding Scheme for Training Young Teachers in Shanghai Colleges,China(No.ZZGJD13006)Key Support Project of Shanghai Science and Technology Committee,China(No.13510501400)Research Startup Foundation of Shanghai University of Engineering Science,China(No.2013-13)The Connotative Construction Projects of Shanghai Local Colleges in the 12th Five-Year,China(No.nhky-2012-10)Shandong Province Young and Middle-Aged Scientists Research Awards Fund,China(No.BS2013DX021)Shandong Academy Young Scientists Fund Project,China(No.2013QN037)
文摘Path recognition is an inevitable core technology in the development of tracking robot. In this paper,the path tracking system of tracking robot can be realized by image sensor module based on camera to obtain lane image information,and then extract the path through visual servo. The whole system can be divided into seven modules: micro control unit( MCU) processor module,image acquisition module,debugging module,motor drive module,servo drive module,speed sensor module,and voltage conversion module.In image pre-processing part,there is an introduction of binarization processing and the median filtering to strengthen the image information. About recognition algorithm,three key variables which are changed in the movement state are discussed and there are also many auxiliary algorithms that help to improve the path recognition.The experiment can verify that the whole system can accurately abstract the black guide lines from the white track and make the robot moving fast and stable by following the road parameters and conditions.
文摘探讨了低功耗设计在便携设备中的重要性,并结合互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)环形振荡器的设计从不同角度阐述低功耗设计的要点。首先,介绍了低功耗设计的概念、背景以及其在现代便携设备中的应用。其次,讨论了动态功耗和静态功耗对电路的影响,提出相应的解决方法和优化措施。再次,从工艺调整和设计方法2个角度,详细介绍低功耗设计的方法。最后,结合具体的CMOS环形振荡器设计,展示了低功耗设计的实际应用和优势,为便携设备的高效、可靠运行提供了理论基础和技术支持。
文摘针对智能车因单条引导线信息量少而引起的误识别问题,设计一种能自动识别和跟踪双边引导线的智能车系统。智能车以Freescale公司MC9S12XSl28作为核心控制器,利用COMS(Complementary Metal OxideSemiconductor)摄像头OV7620作为路径信息采集装置,对采集图像进行二值化处理、去噪操作和边缘检测后提取路径信息、进而准确地判别跑道的形状,为舵机和电机提供控制依据,以使小车平稳快速地行驶。同时,提出将行驶状态与赛道信息综合考虑的措施,并通过PID(Proportional Integral Differential)控制策略以及实验测试,实现了对各种典型跑道的优化处理,使高速行进中的智能车具有良好的转向调节能力和加减速响应能力。智能车可以在以白色为底面颜色,两边有黑色引导线的跑道上运行,克服了因单条引导线信息量少而引起的误识别问题。
文摘磁场是太阳物理的第1观测量,当前太阳磁场观测研究正迈向大视场、高时空分辨率、高偏振测量精度以及空间观测的时代.中国首颗太阳观测卫星-先进天基太阳天文台(ASO-S)也配置了具有高时空分辨率、高磁场灵敏度的全日面矢量磁像仪(FMG)载荷,针对FMG载荷的需求,讨论了大面阵、高帧频互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)图像传感器应用于太阳磁场观测的可行性.首先,基于滤光器型太阳磁像仪观测的原理,比较分析了目前CMOS图像传感器(可用的或是可选的两种快门模式)的特点,指出全局快门类型更适合FMG;其次搭建了CMOS传感器实验室测试系统,测量了CMOS图像传感器的像素增益及其分布规律;最后在怀柔太阳观测基地的全日面太阳望远镜上开展了实测验证,获得预期成果.在这些研究基础上,形成了FMG载荷探测器选型方向.