1 Statement of Limit Theorems Let A={a<sub>1</sub>,…, a<sub>|A|</sub>} be a finite alphabet, B={0, 1}, and N={0, 1,…}. By A<sup>n</sup>(A<sup>∞</sup>, resp.), we de...1 Statement of Limit Theorems Let A={a<sub>1</sub>,…, a<sub>|A|</sub>} be a finite alphabet, B={0, 1}, and N={0, 1,…}. By A<sup>n</sup>(A<sup>∞</sup>, resp.), we denote the set of words with the length n(∞, resp.) from the alphabet A; let A<sup>*</sup>= A<sup>n</sup>. B<sup>n</sup>, B<sup>∞</sup> and B<sup>*</sup> are defined similarly. A<sup>n</sup>(A<sup>∞</sup>, resp.) is also considered to be the n-fold (infinite, resp.) Cartesian product of A. If x=(x<sub>i</sub>) is a finite or infinite展开更多
文摘1 Statement of Limit Theorems Let A={a<sub>1</sub>,…, a<sub>|A|</sub>} be a finite alphabet, B={0, 1}, and N={0, 1,…}. By A<sup>n</sup>(A<sup>∞</sup>, resp.), we denote the set of words with the length n(∞, resp.) from the alphabet A; let A<sup>*</sup>= A<sup>n</sup>. B<sup>n</sup>, B<sup>∞</sup> and B<sup>*</sup> are defined similarly. A<sup>n</sup>(A<sup>∞</sup>, resp.) is also considered to be the n-fold (infinite, resp.) Cartesian product of A. If x=(x<sub>i</sub>) is a finite or infinite