期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Vertex-distinguishing E-total Coloring of Complete Bipartite Graph K 7,n when7≤n≤95 被引量:14
1
作者 chen xiang-en du xian-kun 《Communications in Mathematical Research》 CSCD 2016年第4期359-374,共16页
Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints.... Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex x of G, let C(x) denote the set of colors of vertex x and of the edges incident with x, we call C(x) the color set of x. If C(u) ≠ C(v) for any two different vertices u and v of V (G), then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by Хvt^e(G) and is called the VDE T chromatic number of G. The VDET coloring of complete bipartite graph K7,n (7 ≤ n ≤ 95) is discussed in this paper and the VDET chromatic number of K7,n (7 ≤ n ≤ 95) has been obtained. 展开更多
关键词 graph complete bipartite graph E-total coloring vertex-distinguishingE-total coloring vertex-distinguishing E-total chromatic number
下载PDF
Signed Roman (Total) Domination Numbers of Complete Bipartite Graphs and Wheels 被引量:4
2
作者 ZHAO YAN-CAI MIAO LIAN-YING Du Xian-kun 《Communications in Mathematical Research》 CSCD 2017年第4期318-326,共9页
A signed(res. signed total) Roman dominating function, SRDF(res.STRDF) for short, of a graph G =(V, E) is a function f : V → {-1, 1, 2} satisfying the conditions that(i)∑v∈N[v]f(v) ≥ 1(res.∑v∈N(v)f(v) ≥ 1) for ... A signed(res. signed total) Roman dominating function, SRDF(res.STRDF) for short, of a graph G =(V, E) is a function f : V → {-1, 1, 2} satisfying the conditions that(i)∑v∈N[v]f(v) ≥ 1(res.∑v∈N(v)f(v) ≥ 1) for any v ∈ V, where N [v] is the closed neighborhood and N(v) is the neighborhood of v, and(ii) every vertex v for which f(v) =-1 is adjacent to a vertex u for which f(u) = 2. The weight of a SRDF(res. STRDF) is the sum of its function values over all vertices.The signed(res. signed total) Roman domination number of G is the minimum weight among all signed(res. signed total) Roman dominating functions of G. In this paper,we compute the exact values of the signed(res. signed total) Roman domination numbers of complete bipartite graphs and wheels. 展开更多
关键词 signed Roman domination signed total Roman domination complete bipartite graph WHEEL
下载PDF
Vertex-distinguishing IE-total Colorings of Complete Bipartite Graphs K8,n 被引量:3
3
作者 SHI Jin CHEN Xiang-en 《Chinese Quarterly Journal of Mathematics》 2016年第2期147-154,共8页
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of verte... Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χ_(vt)^(ie) (G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K_(8,n)are discussed in this paper. Particularly, the VDIET chromatic number of K_(8,n) are obtained. 展开更多
关键词 complete bipartite graphs IE-total coloring vertex-distinguishing IE-total coloring vertex-distinguishing IE-total chromatic number
下载PDF
Cycle Multiplicity of Total Graph of Complete Bipartite Graph
4
作者 Ganghua Xie Yinkui Li 《Open Journal of Discrete Mathematics》 2023年第4期95-99,共5页
Cycle multiplicity of a graph G is the maximum number of edge disjoint cycles in G. In this paper, we determine the cycle multiplicity of and then obtain the formula of cycle multiplicity of total graph of complete bi... Cycle multiplicity of a graph G is the maximum number of edge disjoint cycles in G. In this paper, we determine the cycle multiplicity of and then obtain the formula of cycle multiplicity of total graph of complete bipartite graph, this generalizes the result for, which is given by M.M. Akbar Ali in [1]. 展开更多
关键词 Cycle Multiplicity complete bipartite graph Total graph
下载PDF
E-Total Coloring of Complete Bipartite Graphs K_(5,n)(5≤n≤7 113)Which Are Vertex-Distinguished by Multiple Sets
5
作者 GUO Yaqin CHEN Xiang'en 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第5期412-418,共7页
In this study,using the method of contradiction and the pre-assignment of chromatic sets,we discuss the E-total coloring of complete bipartite graphs K_(5,n)(5≤n≤7 113) which are vertex-distinguished by multiple set... In this study,using the method of contradiction and the pre-assignment of chromatic sets,we discuss the E-total coloring of complete bipartite graphs K_(5,n)(5≤n≤7 113) which are vertex-distinguished by multiple sets.The vertex-distinguishing E-total chromatic numbers of this kind of graph are determined. 展开更多
关键词 complete bipartite graph E-total coloring E-total chromatic number multiple sets chromatic sets
原文传递
K_(p,q)-factorization of complete bipartite graphs 被引量:3
6
作者 DU Beiliang WANG Jian Department of Mathematics, Suzhou University, Suzhou 215006, China Nantong Vocational College, Nantong 226007, China 《Science China Mathematics》 SCIE 2004年第3期473-479,共7页
Let Km,n be a completebipartite graph with two partite sets having m and n vertices,respectively. A Kp,q-factorization of Km,n is a set ofedge-disjoint Kp,q-factors of Km,n which partition theset of edges of Km,n. Whe... Let Km,n be a completebipartite graph with two partite sets having m and n vertices,respectively. A Kp,q-factorization of Km,n is a set ofedge-disjoint Kp,q-factors of Km,n which partition theset of edges of Km,n. When p=1 and q is a prime number,Wang, in his paper 'On K1,k-factorizations of a completebipartite graph' (Discrete Math, 1994, 126: 359-364),investigated the K1,q-factorization of Km,n and gave asufficient condition for such a factorization to exist. In the paper'K1,k-factorizations of complete bipartite graphs' (DiscreteMath, 2002, 259: 301-306), Du and Wang extended Wang's resultto the case that q is any positive integer. In this paper, we give a sufficient condition for Km,n to have aKp,q-factorization. As a special case, it is shown that theMartin's BAC conjecture is true when p:q=k:(k+1) for any positiveinteger k. 展开更多
关键词 complete bipartite graph FACTORIZATION HUBMFS 2 scheme
原文传递
Graham's pebbling conjecture on product of complete bipartite graphs 被引量:2
7
作者 冯荣权 金珠英 《Science China Mathematics》 SCIE 2001年第7期817-822,共6页
The pebbling number of a graph G,f(G),is the least n such that,no matter how n pebbles are placed on the vertices of G,we can move a pebble to any vertex by a sequence of moves,each move taking two pebbles off one ver... The pebbling number of a graph G,f(G),is the least n such that,no matter how n pebbles are placed on the vertices of G,we can move a pebble to any vertex by a sequence of moves,each move taking two pebbles off one vertex and placing one on an adjacent vertex.Graham conjectured that for any connected graphs G and H,f(G×H)≤f(G)f(H).We show that Graham's conjecture holds true of a complete bipartite graph by a graph with the two-pebbling property.As a corollary,Graham's conjecture holds when G and H are complete bipartite graphs. 展开更多
关键词 PEBBLING Graham’s conjecture Cartesian product complete bipartite graph.
原文传递
The Chromatic Uniqueness of Bipartite Graphs K(m,n)-A with |A|=2
8
作者 邹辉文 朱忠华 《Journal of Donghua University(English Edition)》 EI CAS 2006年第3期47-51,共5页
The chromatically uniqueness of bipartite graphs K (m, n) - A(]A] = 2) was studied. With comparing the numbers of partitions into r color classes of two chromatically equivalent graphs, one general numerical condi... The chromatically uniqueness of bipartite graphs K (m, n) - A(]A] = 2) was studied. With comparing the numbers of partitions into r color classes of two chromatically equivalent graphs, one general numerical condition guaranteeing that K( m, n) - A ( I A ] = 2) is chromatically unique were obtained. This covers and improves the former correlative results. 展开更多
关键词 complete bipartite graph chromatically uniquegraph chromatically normal graphs partition into colorclasses.
下载PDF
The Further Results of the Chromatic Uniqueness of Certain Bipartite Graphs K(m, n)-A
9
作者 邹辉文 朱忠华 《Journal of Donghua University(English Edition)》 EI CAS 2008年第2期207-212,共6页
With its comprehensive application in network information engineering (e. g. dynamic spectrum allocation under different distance constraints ) and in network combination optimization (e. g. safe storage of deleter... With its comprehensive application in network information engineering (e. g. dynamic spectrum allocation under different distance constraints ) and in network combination optimization (e. g. safe storage of deleterious materials), the graphs' cloring theory and chromatic uniqueness theory have been the forward position of graph theory research. The later concerns the equivalent classification of graphs with their color polynomials and the determination of uniqueness of some equivalent classification under isomorphism. In this paper, by introducing the concept of chromatic normality and comparing the number of partitions of two chromatically equivalent graphs, a general numerical condition guarenteeing that bipartite graphs K ( m, n) - A (A belong to E(K (m, n) ) and | A |≥ 2) is chromatically unique was obtained and a lot of chromatic uniqueness graphs of bipartite graphs K(m, n) - A were determined. The results obtained in this paper were general. And the results cover and extend the majority of the relevant results obtained within the world. 展开更多
关键词 complete bipartite graph chromatically unique graph chromatically normal graph partition into color Classes
下载PDF
The Thickness of Some Complete Bipartite and Tripartite Graphs
10
作者 Si-wei HU Yi-chao CHEN 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2024年第4期1001-1014,共14页
In this paper,we obtain the thickness for some complete k-partite graphs for k=2,3.We first compute the thickness of K_(n,n+8)by giving a planar decomposition of K_(4k-1,4k+7)for k≥3.Then,two planar decompositions fo... In this paper,we obtain the thickness for some complete k-partite graphs for k=2,3.We first compute the thickness of K_(n,n+8)by giving a planar decomposition of K_(4k-1,4k+7)for k≥3.Then,two planar decompositions for K_(1,g,g)(g-1)when g is even and for K^(1,g,1/2(g-1)2)when g is odd are obtained.Using a recursive construction,we also obtain the thickness for some complete tripartite graphs.The results here support the long-standing conjecture that the thickness of K_(m,n)is[mn/2(m+n-2)]for any positive integers m,n. 展开更多
关键词 thickness complete bipartite graph complete tripartite graph planar decomposition
原文传递
Minus total k-subdomination in graphs
11
作者 段铸荣 单而芳 +1 位作者 李明松 吴卫国 《Journal of Shanghai University(English Edition)》 CAS 2009年第5期417-422,共6页
Let G = (V,E) be a simple graph without isolated vertices. For positive integer k, a 3-valued function f : V → {-1,0,1} is said to be a minus total k-subdominating function (MTkSF) if sum from (u∈N(v)) to f(u)≥1 fo... Let G = (V,E) be a simple graph without isolated vertices. For positive integer k, a 3-valued function f : V → {-1,0,1} is said to be a minus total k-subdominating function (MTkSF) if sum from (u∈N(v)) to f(u)≥1 for at least k vertices v in G, where N(v) is the open neighborhood of v. The minus total k-subdomination number γkt(G) equals the minimum weight of an MTkSF on G. In this paper, the values on the minus total k-subdomination number of some special graphs are investigated. Several lower bounds on γkt of general graphs and trees are obtained. 展开更多
关键词 minus total k-subdomination PATH complete graph complete bipartite graph BOUND
下载PDF
Total Chromatic Number of the Join of K_(m,n) and C_n
12
作者 LI Guang-rong ZHANG Li-min 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第2期264-270,共7页
The total chromatic number xT(G) of a graph G is the minimum number of colors needed to color the elements(vertices and edges) of G such that no adjacent or incident pair of elements receive the same color, G is c... The total chromatic number xT(G) of a graph G is the minimum number of colors needed to color the elements(vertices and edges) of G such that no adjacent or incident pair of elements receive the same color, G is called Type 1 if xT(G) =△(G)+1. In this paper we prove that the join of a complete bipartite graph Km,n and a cycle Cn is of Type 1. 展开更多
关键词 total coloring total chromatic number join graphs CYCLE complete bipartite graph
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部