期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于YOLOXs的TERMINAL_PIN焊接面表面缺陷检测方法
1
作者 殷兆鑫 祁彦庆 汪烈军 《计算机应用》 CSCD 北大核心 2023年第S02期209-215,共7页
在新能源汽车(NEV)行业,TERMINAL_PIN焊接面存在缺陷会导致安全事故。针对目前TERMINAL_PIN焊接面缺陷数据集的空缺,现有模型检测小目标物体时存在鲁棒性差、准确率低和训练时间长等问题,首先,从东莞某公司的自动化生产线上收集TERMINAL... 在新能源汽车(NEV)行业,TERMINAL_PIN焊接面存在缺陷会导致安全事故。针对目前TERMINAL_PIN焊接面缺陷数据集的空缺,现有模型检测小目标物体时存在鲁棒性差、准确率低和训练时间长等问题,首先,从东莞某公司的自动化生产线上收集TERMINAL_PIN焊接面缺陷的图像,构建TERMINAL_PIN焊接面缺陷数据集;其次,提出一种基于YOLOXs的TERMINAL_PIN焊接面表面缺陷检测方法,在预测端的解耦头中加入高效通道注意力(ECA)模块和空间注意力(SA)模块,通过生成的通道和空间注意权重值,抑制干扰信息,增强模型对目标特征的关注度,提高模型对有用信息的利用程度;为了加快收敛,让预测框更符合真实框,在损失函数中引入完全交并比(CIoU)。实验结果表明,改进后的YOLOXs在TERMINAL_PIN焊接面缺陷数据集上的平均精度均值(mAP)值达91.98%,比原始YOLOXs高4.35个百分点,确保TERMINAL_PIN焊接面缺陷检测有较高的准确率。 展开更多
关键词 TERMINAL_PIN焊接面 缺陷检测 YOLOXs 注意力机制 完全交并比
下载PDF
改进的RetinaNet目标检测算法 被引量:4
2
作者 于敏 屈丹 司念文 《计算机工程》 CAS CSCD 北大核心 2022年第8期249-257,共9页
针对经典一阶段目标检测算法RetinaNet难以充分提取不同阶段特征、边界框回归不够准确等问题,提出一个面向目标检测的改进型RetinaNet算法。在特征提取模块中加入多光谱通道注意力,将输入特征中的频率分量合并到注意力处理中,从而捕获... 针对经典一阶段目标检测算法RetinaNet难以充分提取不同阶段特征、边界框回归不够准确等问题,提出一个面向目标检测的改进型RetinaNet算法。在特征提取模块中加入多光谱通道注意力,将输入特征中的频率分量合并到注意力处理中,从而捕获特征原有的丰富信息。将多尺度特征融合模块添加到特征提取模块,多尺度特征融合模块包括1个路径聚合模块和1个特征融合操作,路径聚合模块通过搭建自底向上的路径,利用较浅特征层上精确的定位信号增强整个特征金字塔的信息流,特征融合操作通过融合来自每个阶段的特征信息优化多阶段特征的融合效果。此外,在边界框回归过程中引入完全交并比损失函数,从边界框的重叠面积、中心点距离和长宽比这3个重要的几何因素出发,提升回归过程的收敛速度与准确性。在MS COCO数据集和PASCAL VOC数据集上的实验结果表明,与RetinaNet算法相比,改进型RetinaNet算法在2个数据集上的平均精度分别提高了2.1、1.1个百分点,尤其对于MS COCO数据集中较大目标的检测,检测精度的提升效果更加显著。 展开更多
关键词 深度学习 目标检测 多光谱通道注意力 多尺度特征融合 完全交并比
下载PDF
改进YOLOv3的火灾检测 被引量:7
3
作者 王林 赵红 《计算机系统应用》 2022年第4期143-153,共11页
针对火灾检测中小目标检测率低、复杂场景下检测精度低和检测不及时等问题,提出了一种改进YOLOv3的火灾检测算法.首先,通过改进的K-means聚类算法重新获取更符合火焰和烟雾尺寸的anchor;其次在Darknet-53后添加空间金字塔池化,提升了网... 针对火灾检测中小目标检测率低、复杂场景下检测精度低和检测不及时等问题,提出了一种改进YOLOv3的火灾检测算法.首先,通过改进的K-means聚类算法重新获取更符合火焰和烟雾尺寸的anchor;其次在Darknet-53后添加空间金字塔池化,提升了网络的感受野进而增强了网络对小尺度目标的检测能力;然后通过CIoU改进损失函数,在计算坐标误差时考虑中心和宽高坐标两者的相关性,加快了损失函数的收敛;最后使用mosaic数据增强丰富了待检测物体的背景.在自制的数据集上训练并测试,实验结果表明:改进后的算法比YOLOv3火焰的AP从94%提升至98%,烟雾的AP从82%提升至94%,平均检测速度从31 fps提升至43 fps,相比Faster R-CNN、SDD等算法也有更高的mAP和更快的检测速度.因此,改进后的算法能够更有效地进行火灾预警. 展开更多
关键词 火灾检测 YOLOv3 空间金字塔池化 ciou mosaic数据增强 目标检测 深度学习
下载PDF
复杂环境下的冰箱金属表面缺陷检测 被引量:12
4
作者 袁野 谭晓阳 《计算机应用》 CSCD 北大核心 2021年第1期270-274,共5页
为了提升冰箱金属表面的缺陷检测效率,从而应对复杂的生产情况,提出了Metal-YOLOv3模型。使用随机参数变换,将缺陷数据进行了数百倍的扩充,改变原有YOLOv3模型的损失函数,引入了基于完整交并比(CIoU)所设计的CIoU损失函数,用缺陷的分布... 为了提升冰箱金属表面的缺陷检测效率,从而应对复杂的生产情况,提出了Metal-YOLOv3模型。使用随机参数变换,将缺陷数据进行了数百倍的扩充,改变原有YOLOv3模型的损失函数,引入了基于完整交并比(CIoU)所设计的CIoU损失函数,用缺陷的分布特性来降低非极大值抑制算法的阈值,并基于K均值聚类算法计算出更适合数据特点的先验框(anchors)值以提升检测精度。在一系列的实验后,发现Metal-YOLOv3模型在检测速度上远胜于主流的区域卷积神经网络(R-CNN)模型,每秒传输帧数(FPS)达到7.59,是Faster R-CNN的14倍,而且平均精确度(AP)也达到了88.96%,比Faster R-CNN高11.33个百分点,说明所提模型同时具备良好的鲁棒性与泛化性能。可见该方法具备有效性,能实际应用于金属制品的生产。 展开更多
关键词 金属表面 缺陷 冰箱 损失函数 YOLOv3 完整交并比
下载PDF
YOLOv5上融合多特征的实时火焰检测方法 被引量:5
5
作者 张大胜 肖汉光 +1 位作者 文杰 徐勇 《模式识别与人工智能》 EI CSCD 北大核心 2022年第6期548-561,共14页
在自然场景中,天气情况、光照强度、背景干扰等问题影响火焰检测的准确性.为了实现复杂场景下实时准确的火焰检测,在目标检测网络YOLOv5的基础上,结合Focal Loss焦点损失函数、CIoU(Complete Intersection over Union)损失函数与多特征... 在自然场景中,天气情况、光照强度、背景干扰等问题影响火焰检测的准确性.为了实现复杂场景下实时准确的火焰检测,在目标检测网络YOLOv5的基础上,结合Focal Loss焦点损失函数、CIoU(Complete Intersection over Union)损失函数与多特征融合,提出实时高效的火焰检测方法.为了缓解正负样本不均衡问题,并充分利用困难样本的信息,引入焦点损失函数,同时结合火焰静态特征和动态特征,设计多特征融合方法,达到剔除误报火焰的目的.针对国内外缺乏火焰数据集的问题,构建大规模、高质量的十万量级火焰数据集(http://www.yongxu.org/data bases.html).实验表明,文中方法在准确率、速度、精度和泛化能力等方面均有明显提升,同时降低误报率. 展开更多
关键词 YOLOv5 火焰检测 FOCAL Loss损失函数 ciou损失函数 多特征融合
下载PDF
基于改进Faster RCNN的城市道路货车检测 被引量:3
6
作者 任杰 李钢 +2 位作者 赵燕姣 姚琼辛 田培辰 《计算机系统应用》 2022年第12期316-321,共6页
针对货车利用躲避摄像头等手段在城市道路中不按规定时间、规定线路行驶,使得车辆不能被准确识别的问题,提出基于改进Faster RCNN的城市道路货车检测方法.该方法以Faster RCNN为基础模型,通过对传入主干网络的车辆图片进行卷积和池化等... 针对货车利用躲避摄像头等手段在城市道路中不按规定时间、规定线路行驶,使得车辆不能被准确识别的问题,提出基于改进Faster RCNN的城市道路货车检测方法.该方法以Faster RCNN为基础模型,通过对传入主干网络的车辆图片进行卷积和池化等操作来提取特征,其中增加特征金字塔网络(FPN)提升对多尺度目标检测的精度;同时将K-means聚类算法应用在数据集上以获取新的锚点框;利用RPN(region proposal network)生成建议框;并使用CIoU(complete-IoU)损失函数代替原算法的smoothL1损失函数以提升检测车辆的精确性.实验结果显示,改进后的Faster RCNN相比原算法对货车检测的平均精度(AP)提高7.2%,召回率(recall)提高6.1%,减少了漏检的可能,在不同场景下具有良好的检测效果. 展开更多
关键词 Faster RCNN ciou 特征金字塔网络 RPN 车辆检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部