Two new fixed point theorems on two complete metric spaces are proved by using the concept of w -distance. One of the results is: let (X,d) and (Y,ρ) be two complete metric spaces,let p 1 be a w -distance o...Two new fixed point theorems on two complete metric spaces are proved by using the concept of w -distance. One of the results is: let (X,d) and (Y,ρ) be two complete metric spaces,let p 1 be a w -distance on X and p 2 be a w -distance on Y . If T is a continuous mapping of X into Y and S is a mapping of Y into X ,satisfying the inequalities: p 1(STx,STx′)≤c max {p 1(x,x′),p 1(x,STx),p 1(x′,STx′),p 1(x,STx′)/2,p 2(Tx,Tx′)} and p 2(TSy,TSy′)≤c max {p 2(y,y′),p 2(y,TSy),p 2(y′,TSy′),p 2(y,TSy′)/2,p 1(Sy,Sy′)} for all x,x′ in X and y,y′ in Y ,where 0≤ c<1. We have proved that ST has a unique fixed point z in X and TS has a unique fixed point w in Y . The two theorems have improved the fixed point theorems of Fisher and Namdeo,et al.展开更多
The concept of w distance on a metric space is introduced and three common fixed points theorems for commuting maps on a complete metric space are proved. These results extended fixed point theorems of Jungck a...The concept of w distance on a metric space is introduced and three common fixed points theorems for commuting maps on a complete metric space are proved. These results extended fixed point theorems of Jungck and Ciric.展开更多
First, the implicit relations were given. A common fixed point theorem was proved for two mappings satisfying implicit relation functions. A further fixed point theorem was proved for mappings satisfying implicit rela...First, the implicit relations were given. A common fixed point theorem was proved for two mappings satisfying implicit relation functions. A further fixed point theorem was proved for mappings satisfying implicit relation functions on two compact metric spaces.展开更多
Under the conditions of compatility or sub -c ompatility between a sigle-valued mapping and set-valued mapping, this paper d iscusses the existence of common fixed points for two set-valued mappings and a single-value...Under the conditions of compatility or sub -c ompatility between a sigle-valued mapping and set-valued mapping, this paper d iscusses the existence of common fixed points for two set-valued mappings and a single-valued mapping in complete, convex matric spaces. We extend and develop the main results.展开更多
In this paper,we investigate theλ-nuclearity in the system of completely 1-summing mapping spaces(Π1(⋅,⋅),π1).In Section 2,we obtain that C is the unique operator space that is nuclear in the system(Π1(⋅,⋅),π1).W...In this paper,we investigate theλ-nuclearity in the system of completely 1-summing mapping spaces(Π1(⋅,⋅),π1).In Section 2,we obtain that C is the unique operator space that is nuclear in the system(Π1(⋅,⋅),π1).We generalize some results in Section 2 toλ-nuclearity in Section 3.展开更多
In this paper, we investigate local properties in the system of completely 1-summing mapping spaces. We introduce notions of injectivity, local reflexivity, exactness, nuclearity and finite-representability in the sys...In this paper, we investigate local properties in the system of completely 1-summing mapping spaces. We introduce notions of injectivity, local reflexivity, exactness, nuclearity and finite-representability in the system of completely 1-summing mapping spaces. First we obtain that if V has WEP, V is locally reflexive in the system (Ⅱ<sub>1</sub>(⋅,⋅), π<sub>1</sub>(⋅)) if and only if it is locally reflexive in the system (Ⅰ(⋅,⋅), t(⋅)). Furthermore we prove that an operator space V ⊆ B(H) is exact in the system (Ⅱ<sub>1</sub>(⋅,⋅), π<sub>1</sub>(⋅)) if and only if V is finitely representable in {M<sub>n</sub>}<sub>n∈N</sub> in the system (Ⅱ<sub>1</sub>(⋅,⋅), π<sub>1</sub>(⋅)). At last, we show that an operator space V is finitely representable in {M<sub>n</sub>}<sub>n∈N</sub> in the system (Ⅱ<sub>1</sub>(⋅,⋅), π<sub>1</sub>(⋅)) if and only if V = C.展开更多
In this paper,the following results are obtained: (1) The Sorgenfrey Line is a non-Br-space; (2) We introduce Well-distributed complete spaces and locally Cech complete spaces andprove both the two classes of spacs ar...In this paper,the following results are obtained: (1) The Sorgenfrey Line is a non-Br-space; (2) We introduce Well-distributed complete spaces and locally Cech complete spaces andprove both the two classes of spacs are Br-spaces. The first result shows that there is the non-Br-space which is paracompact, Lindelof and complete quasi-metric. The second result generalizes theByczowski &. Pol theorem(i. e. Cech-complete spaces are Br-spaces) in two aspects.展开更多
By using partial order method. some existing theorems of solutions for two-point bouniary value problem of second order ordinary differenlial equations in Banach spaces are given.
In this paper,we investigate local properties in the system of completely integral mapping spaces.We introduce notions of injectivity,local reflexivity,exactness,nuclearity,finite-represent ability and WEP in the syst...In this paper,we investigate local properties in the system of completely integral mapping spaces.We introduce notions of injectivity,local reflexivity,exactness,nuclearity,finite-represent ability and WEP in the system of completely integral mapping spaces.First we obtain that any finite-dimensional operator space is injective in the system of completely integral mapping spaces.Furthermore we prove that C is the unique nuclear operator space and the unique exact operator space in this system.We also show that C is the unique operator space which is finitely representable in{T_(n)}n∈Nin this system.As corollaries,Kirchberg’s conjecture and QWEP conjecture in the system of completely integral mapping spaces are false.展开更多
In this paper,we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces.Furthermore,we study fixed point theorems for Reich a...In this paper,we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces.Furthermore,we study fixed point theorems for Reich and Chatterjea nonexpansive mappings in a Banach space using the Krasnoselskii-Ishikawa iteration method associated withSλand consider some applications of our results to prove the existence of solutions for nonlinear integral and nonlinear fractional differential equations.We also establish certain interesting examples to illustrate the usability of our results.展开更多
This paper aims at treating a study of Banach fixed point theorem for mapping results that introduced in the setting of normed space. The classical Banach fixed point theorem is a generalization of this work. A fixed ...This paper aims at treating a study of Banach fixed point theorem for mapping results that introduced in the setting of normed space. The classical Banach fixed point theorem is a generalization of this work. A fixed point theory is a beautiful mixture of Mathematical analysis to explain some conditions in which maps give excellent solutions. Here later many mathematicians used this fixed point theory to establish their results, see for instance, Picard-Lindel of Theorem, The Picard theorem, Implicit function theorem etc. Also, we developed ideas that many of known fixed point theorems can easily be derived from the Banach theorem. It extends some recent works on the extension of Banach contraction principle to metric space with norm spaces.展开更多
Three classical compactification procedures are presented with nonstandard flavour. This is to illustrate the applicability of Nonstandard analytic tool to beginners interested in Nonstandard analytic methods. The gen...Three classical compactification procedures are presented with nonstandard flavour. This is to illustrate the applicability of Nonstandard analytic tool to beginners interested in Nonstandard analytic methods. The general procedure is as follows: A suitable equivalence relation is defined on an enlargement <sup>*</sup><em>X </em>of the space <em>X</em> which is a completely regular space or a locally compact Hausdorff space or a locally compact Abelian group. Accordingly, every <em>f</em> in <em>C</em>(<em>X</em>,<em>R</em>) (the space of bounded continuous real valued functions on <em>X</em>) or <em>Cc</em>(<em>X</em>,<em>R</em>) (the space of continuous real valued functions on <em>X</em> with compact support) or the dual group <span style="white-space:nowrap;">Γ </span>of the locally compact Abelian group <em>G</em> is extended to the set <img alt="" src="Edit_b9535172-924d-44f0-bab3-c49db17a3b7a.png" /> of the above mentioned equivalence classes. A compact topology on <img alt="" src="Edit_9d7962a3-b8a3-4693-b62a-078c8c4b4853.png" /> is obtained as the weak topology generated by these extensions of <em>f</em>. Then <em>X</em> is naturally imbedded densely in <img alt="" src="Edit_f7d403b2-eff3-4555-b8e7-1b106e06d2e7.png" />.展开更多
Following George and Veeramani et. al. [On some results in Fuzzy Metric Spaces, Fuzzy Sets Syst. 64 (1994) 395-399], we essentially deal with the classical sequence spaces using of the standard fuzzy metric with t-n...Following George and Veeramani et. al. [On some results in Fuzzy Metric Spaces, Fuzzy Sets Syst. 64 (1994) 395-399], we essentially deal with the classical sequence spaces using of the standard fuzzy metric with t-norm. We consider well-known classical sequence spaces such as l∞ , C, C0 and l p, and we have construct it with standard fuzzy metric. Finally, the completeness of these spaces was given by using the same metric.展开更多
For a family of vector-valued bifunctions,we introduce the notion of sequentially lower monotonity,which is strictly weaker than the lower semi-continuity of the second variables of the bifunctions.Then,we give a gene...For a family of vector-valued bifunctions,we introduce the notion of sequentially lower monotonity,which is strictly weaker than the lower semi-continuity of the second variables of the bifunctions.Then,we give a general version of vectorial Ekeland variational principle(briefly,denoted by EVP) for a system of equilibrium problems,where the sequentially lower monotone objective bifunction family is defined on products of sequentially lower complete spaces(concerning sequentially lower complete spaces,see Zhu et al(2013)),and taking values in a quasi-ordered locally convex space.Besides,the perturbation consists of a subset of the ordering cone and a family {p_i}_(i∈I) of negative functions satisfying for each i∈I,p_i(x_i,y_i) = 0 if and only if x_i=y_i.From the general version,we can deduce several particular equilibrium versions of EVP,which can be applied to show the existence of solutions for countable systems of equilibrium problems.In particular,we obtain a general existence result of solutions for countable systems of equilibrium problems in the setting of sequentially lower complete spaces.By weakening the compactness of domains and the lower semi-continuity of objective bifunctions,we extend and improve some known existence results of solutions for countable system of equilibrium problems in the setting of complete metric spaces(or Fréchet spaces).When the domains are non-compact,by using the theory of angelic spaces(see Floret(1980)),we generalize some existence results on solutions for countable systems of equilibrium problems by extending the framework from reflexive Banach spaces to the strong duals of weakly compactly generated spaces.展开更多
Potential surfaces and equilibrium geometries of InAs 2, In 2As, InAs 2 + and In 2As + were studied using the complete active space multi configuration self consistent field (CASMCSCF) technique. Two electronic stat...Potential surfaces and equilibrium geometries of InAs 2, In 2As, InAs 2 + and In 2As + were studied using the complete active space multi configuration self consistent field (CASMCSCF) technique. Two electronic states, namely 2B 2 and 2B 1, were found to prevail as the ground states for the InAs 2 and In 2As trimers, respectively. The corresponding adiabatic ionization energies were computed and the leading configurations of the ground states were analyzed according to the wavefunctions.展开更多
In this paper,we generalize the renowned Ciric and Caristi type fixed point theorem and some corollaries.Then we give an example to illustrate our result is really better than the theorem.
We made an extended study on the structure and properties of the low-lying electronic states of ethynyl substituted aniline and their cations. We performed these calculations using density functional theory method(B3...We made an extended study on the structure and properties of the low-lying electronic states of ethynyl substituted aniline and their cations. We performed these calculations using density functional theory method(B3LYP and CAM-B3LYP DFT) and the complete active space self-consistent field(CASSCF) approach in connection with the aug-cc-pVZ Dunning's basis sets and concerted ANO-L-VDZP basis sets. Our results included their equilibrium geometries, the vertical excitation spectra and the vertical and adiabatic ionization energies. The effect of ethynyl substitution on the electronic structure and the spectroscopy of aniline was probed.展开更多
文摘Two new fixed point theorems on two complete metric spaces are proved by using the concept of w -distance. One of the results is: let (X,d) and (Y,ρ) be two complete metric spaces,let p 1 be a w -distance on X and p 2 be a w -distance on Y . If T is a continuous mapping of X into Y and S is a mapping of Y into X ,satisfying the inequalities: p 1(STx,STx′)≤c max {p 1(x,x′),p 1(x,STx),p 1(x′,STx′),p 1(x,STx′)/2,p 2(Tx,Tx′)} and p 2(TSy,TSy′)≤c max {p 2(y,y′),p 2(y,TSy),p 2(y′,TSy′),p 2(y,TSy′)/2,p 1(Sy,Sy′)} for all x,x′ in X and y,y′ in Y ,where 0≤ c<1. We have proved that ST has a unique fixed point z in X and TS has a unique fixed point w in Y . The two theorems have improved the fixed point theorems of Fisher and Namdeo,et al.
文摘The concept of w distance on a metric space is introduced and three common fixed points theorems for commuting maps on a complete metric space are proved. These results extended fixed point theorems of Jungck and Ciric.
文摘First, the implicit relations were given. A common fixed point theorem was proved for two mappings satisfying implicit relation functions. A further fixed point theorem was proved for mappings satisfying implicit relation functions on two compact metric spaces.
文摘Under the conditions of compatility or sub -c ompatility between a sigle-valued mapping and set-valued mapping, this paper d iscusses the existence of common fixed points for two set-valued mappings and a single-valued mapping in complete, convex matric spaces. We extend and develop the main results.
基金the National Natural Science Foundation of China(11871423).
文摘In this paper,we investigate theλ-nuclearity in the system of completely 1-summing mapping spaces(Π1(⋅,⋅),π1).In Section 2,we obtain that C is the unique operator space that is nuclear in the system(Π1(⋅,⋅),π1).We generalize some results in Section 2 toλ-nuclearity in Section 3.
文摘In this paper, we investigate local properties in the system of completely 1-summing mapping spaces. We introduce notions of injectivity, local reflexivity, exactness, nuclearity and finite-representability in the system of completely 1-summing mapping spaces. First we obtain that if V has WEP, V is locally reflexive in the system (Ⅱ<sub>1</sub>(⋅,⋅), π<sub>1</sub>(⋅)) if and only if it is locally reflexive in the system (Ⅰ(⋅,⋅), t(⋅)). Furthermore we prove that an operator space V ⊆ B(H) is exact in the system (Ⅱ<sub>1</sub>(⋅,⋅), π<sub>1</sub>(⋅)) if and only if V is finitely representable in {M<sub>n</sub>}<sub>n∈N</sub> in the system (Ⅱ<sub>1</sub>(⋅,⋅), π<sub>1</sub>(⋅)). At last, we show that an operator space V is finitely representable in {M<sub>n</sub>}<sub>n∈N</sub> in the system (Ⅱ<sub>1</sub>(⋅,⋅), π<sub>1</sub>(⋅)) if and only if V = C.
文摘In this paper,the following results are obtained: (1) The Sorgenfrey Line is a non-Br-space; (2) We introduce Well-distributed complete spaces and locally Cech complete spaces andprove both the two classes of spacs are Br-spaces. The first result shows that there is the non-Br-space which is paracompact, Lindelof and complete quasi-metric. The second result generalizes theByczowski &. Pol theorem(i. e. Cech-complete spaces are Br-spaces) in two aspects.
文摘By using partial order method. some existing theorems of solutions for two-point bouniary value problem of second order ordinary differenlial equations in Banach spaces are given.
基金Supported by the National Natural Science Foundation of China(Grant No.11871423)Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ21A010015)。
文摘In this paper,we investigate local properties in the system of completely integral mapping spaces.We introduce notions of injectivity,local reflexivity,exactness,nuclearity,finite-represent ability and WEP in the system of completely integral mapping spaces.First we obtain that any finite-dimensional operator space is injective in the system of completely integral mapping spaces.Furthermore we prove that C is the unique nuclear operator space and the unique exact operator space in this system.We also show that C is the unique operator space which is finitely representable in{T_(n)}n∈Nin this system.As corollaries,Kirchberg’s conjecture and QWEP conjecture in the system of completely integral mapping spaces are false.
文摘In this paper,we present the existence and uniqueness of fixed points and common fixed points for Reich and Chatterjea pairs of self-maps in complete metric spaces.Furthermore,we study fixed point theorems for Reich and Chatterjea nonexpansive mappings in a Banach space using the Krasnoselskii-Ishikawa iteration method associated withSλand consider some applications of our results to prove the existence of solutions for nonlinear integral and nonlinear fractional differential equations.We also establish certain interesting examples to illustrate the usability of our results.
文摘This paper aims at treating a study of Banach fixed point theorem for mapping results that introduced in the setting of normed space. The classical Banach fixed point theorem is a generalization of this work. A fixed point theory is a beautiful mixture of Mathematical analysis to explain some conditions in which maps give excellent solutions. Here later many mathematicians used this fixed point theory to establish their results, see for instance, Picard-Lindel of Theorem, The Picard theorem, Implicit function theorem etc. Also, we developed ideas that many of known fixed point theorems can easily be derived from the Banach theorem. It extends some recent works on the extension of Banach contraction principle to metric space with norm spaces.
文摘Three classical compactification procedures are presented with nonstandard flavour. This is to illustrate the applicability of Nonstandard analytic tool to beginners interested in Nonstandard analytic methods. The general procedure is as follows: A suitable equivalence relation is defined on an enlargement <sup>*</sup><em>X </em>of the space <em>X</em> which is a completely regular space or a locally compact Hausdorff space or a locally compact Abelian group. Accordingly, every <em>f</em> in <em>C</em>(<em>X</em>,<em>R</em>) (the space of bounded continuous real valued functions on <em>X</em>) or <em>Cc</em>(<em>X</em>,<em>R</em>) (the space of continuous real valued functions on <em>X</em> with compact support) or the dual group <span style="white-space:nowrap;">Γ </span>of the locally compact Abelian group <em>G</em> is extended to the set <img alt="" src="Edit_b9535172-924d-44f0-bab3-c49db17a3b7a.png" /> of the above mentioned equivalence classes. A compact topology on <img alt="" src="Edit_9d7962a3-b8a3-4693-b62a-078c8c4b4853.png" /> is obtained as the weak topology generated by these extensions of <em>f</em>. Then <em>X</em> is naturally imbedded densely in <img alt="" src="Edit_f7d403b2-eff3-4555-b8e7-1b106e06d2e7.png" />.
文摘Following George and Veeramani et. al. [On some results in Fuzzy Metric Spaces, Fuzzy Sets Syst. 64 (1994) 395-399], we essentially deal with the classical sequence spaces using of the standard fuzzy metric with t-norm. We consider well-known classical sequence spaces such as l∞ , C, C0 and l p, and we have construct it with standard fuzzy metric. Finally, the completeness of these spaces was given by using the same metric.
基金National Natural Science Foundation of China(Grant No. 11471236)
文摘For a family of vector-valued bifunctions,we introduce the notion of sequentially lower monotonity,which is strictly weaker than the lower semi-continuity of the second variables of the bifunctions.Then,we give a general version of vectorial Ekeland variational principle(briefly,denoted by EVP) for a system of equilibrium problems,where the sequentially lower monotone objective bifunction family is defined on products of sequentially lower complete spaces(concerning sequentially lower complete spaces,see Zhu et al(2013)),and taking values in a quasi-ordered locally convex space.Besides,the perturbation consists of a subset of the ordering cone and a family {p_i}_(i∈I) of negative functions satisfying for each i∈I,p_i(x_i,y_i) = 0 if and only if x_i=y_i.From the general version,we can deduce several particular equilibrium versions of EVP,which can be applied to show the existence of solutions for countable systems of equilibrium problems.In particular,we obtain a general existence result of solutions for countable systems of equilibrium problems in the setting of sequentially lower complete spaces.By weakening the compactness of domains and the lower semi-continuity of objective bifunctions,we extend and improve some known existence results of solutions for countable system of equilibrium problems in the setting of complete metric spaces(or Fréchet spaces).When the domains are non-compact,by using the theory of angelic spaces(see Floret(1980)),we generalize some existence results on solutions for countable systems of equilibrium problems by extending the framework from reflexive Banach spaces to the strong duals of weakly compactly generated spaces.
文摘Potential surfaces and equilibrium geometries of InAs 2, In 2As, InAs 2 + and In 2As + were studied using the complete active space multi configuration self consistent field (CASMCSCF) technique. Two electronic states, namely 2B 2 and 2B 1, were found to prevail as the ground states for the InAs 2 and In 2As trimers, respectively. The corresponding adiabatic ionization energies were computed and the leading configurations of the ground states were analyzed according to the wavefunctions.
文摘In this paper,we generalize the renowned Ciric and Caristi type fixed point theorem and some corollaries.Then we give an example to illustrate our result is really better than the theorem.
基金Supported by the National Natural Science Foundation of China(No.21173096) and the National Basic Research Program of China(No. 2013CB83480).
文摘We made an extended study on the structure and properties of the low-lying electronic states of ethynyl substituted aniline and their cations. We performed these calculations using density functional theory method(B3LYP and CAM-B3LYP DFT) and the complete active space self-consistent field(CASSCF) approach in connection with the aug-cc-pVZ Dunning's basis sets and concerted ANO-L-VDZP basis sets. Our results included their equilibrium geometries, the vertical excitation spectra and the vertical and adiabatic ionization energies. The effect of ethynyl substitution on the electronic structure and the spectroscopy of aniline was probed.