Current methods for the analysis of channeling-path phenomena in reservoirs cannot account for the influence of time and space on the actual seepage behavior.In the present study,this problem is addressed considering ...Current methods for the analysis of channeling-path phenomena in reservoirs cannot account for the influence of time and space on the actual seepage behavior.In the present study,this problem is addressed considering actual production data and dynamic characteristic parameters quantitatively determined in the near wellbore area by fitting the water-cut curve of the well.Starting from the dynamic relationship between injection and production data,the average permeability is determined and used to obtain a real-time quantitative characterization of the seepage behavior of the channeling-path in the far wellbore area.For the considered case study(Jidong oilfield),it is found that the seepage capacity of the channeling-path in the far wellbore area is far less(10 times smaller)than that of the channeling-path in the near wellbore area.The present study and the proposed model(combining near wellbore area and far wellbore area real-time data)have been implemented to support the definition of relevant adjustment measures to ultimately improve oil recovery.展开更多
The Class-Ⅲ oil reservoirs of Lasaxing oilfield in the Daqing Oil Fields complex have geological oil reserves of 1.86 billion tonnes,an oil recovery of 39%,with remaining reserves accounting for more than 45%of the t...The Class-Ⅲ oil reservoirs of Lasaxing oilfield in the Daqing Oil Fields complex have geological oil reserves of 1.86 billion tonnes,an oil recovery of 39%,with remaining reserves accounting for more than 45%of the total geological reserves of the oilfield.Therefore,they have considerable potential for future oil production.The current layered injection technologies fail to achieve effective control over the low single-layer injection rates since they can only produce low throttle differential pressure under low injection rates(5-20 m^(3)/d).In this study,a symmetrically-structured double-offset-hole injection allocator and a novel throttling component were developed.Their spatial layout was constructed and mechanical parameters were optimized using finite element analysis,which allows for expanding the flow rate range at low injection rates.According to experimental results,the throttle differential pressure increased from 0.2 MPa to 0.8 MPa at an injection rate of 5 m^(3)/d,and the range of the single-layer flow rates expanded from 20-70 m^(3)/d to 5-70 m3/d.The field test results show that the effective production of oil layers with medium and low permeability was achieved and that the ratio of producing oil layer thickness to the total reservoir thickness increased by 9.7%on average.Therefore,this study provides valuable technical support for the effective chemical-flooding-based development of Class-Ⅲ oil reservoirs.展开更多
基金supported by Bohai Oilfield Efficient Development Demonstration Project(2016ZX05058-003-011).
文摘Current methods for the analysis of channeling-path phenomena in reservoirs cannot account for the influence of time and space on the actual seepage behavior.In the present study,this problem is addressed considering actual production data and dynamic characteristic parameters quantitatively determined in the near wellbore area by fitting the water-cut curve of the well.Starting from the dynamic relationship between injection and production data,the average permeability is determined and used to obtain a real-time quantitative characterization of the seepage behavior of the channeling-path in the far wellbore area.For the considered case study(Jidong oilfield),it is found that the seepage capacity of the channeling-path in the far wellbore area is far less(10 times smaller)than that of the channeling-path in the near wellbore area.The present study and the proposed model(combining near wellbore area and far wellbore area real-time data)have been implemented to support the definition of relevant adjustment measures to ultimately improve oil recovery.
基金sponsored by the key consulting project of the Chinese Academy of Engineering entitled Research on the Sustainable Development Strategy of China's High Water-cut Old Oilfields(No.2019-XZ-15)the National major project entitled Large Oil and Gas Field and Coalbed Methane Development(No.:2016ZX05010006).
文摘The Class-Ⅲ oil reservoirs of Lasaxing oilfield in the Daqing Oil Fields complex have geological oil reserves of 1.86 billion tonnes,an oil recovery of 39%,with remaining reserves accounting for more than 45%of the total geological reserves of the oilfield.Therefore,they have considerable potential for future oil production.The current layered injection technologies fail to achieve effective control over the low single-layer injection rates since they can only produce low throttle differential pressure under low injection rates(5-20 m^(3)/d).In this study,a symmetrically-structured double-offset-hole injection allocator and a novel throttling component were developed.Their spatial layout was constructed and mechanical parameters were optimized using finite element analysis,which allows for expanding the flow rate range at low injection rates.According to experimental results,the throttle differential pressure increased from 0.2 MPa to 0.8 MPa at an injection rate of 5 m^(3)/d,and the range of the single-layer flow rates expanded from 20-70 m^(3)/d to 5-70 m3/d.The field test results show that the effective production of oil layers with medium and low permeability was achieved and that the ratio of producing oil layer thickness to the total reservoir thickness increased by 9.7%on average.Therefore,this study provides valuable technical support for the effective chemical-flooding-based development of Class-Ⅲ oil reservoirs.