The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective meth...The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks.展开更多
Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vit...Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vitally important for reservoir effective development.Well interference has been historically investigated by pressure transient analysis,while it has shown that rate transient analysis has great potential in well interference diagnosis.However,the impact of complex fracture networks(CFNs)on rate transient behavior of parent well and child well in unconventional reservoirs is still not clear.To further investigate,this paper develops an integrated approach combining pressure and rate transient analysis for well interference diagnosis considering CFNs.To perform multi-well simulation considering CFNs,non-intrusive embedded discrete fracture model approach was applied for coupling fracture with reservoir models.The impact of CFN including natural fractures and frac-hits on pressure and rate transient behavior in multi-well system was investigated.On a logelog plot,interference flow and compound linear flow are two new flow regimes caused by nearby producers.When both NFs and frac-hits are present in the reservoir,frac-hits have a greater impact on well#1 which contains frac-hits,and NFs have greater impact on well#3 which does not have frac-hits.For all well producing circumstances,it might be challenging to see divergence during pseudosteady state flow brought on by frac-hits on the logelog plot.Besides,when NFs occur,reservoir depletion becomes noticeable in comparison to frac-hits in pressure distribution.Application of this integrated approach demonstrates that it works well to characterize the well interference among different multi-fractured horizontal wells in a well pad.Better reservoir evaluation can be acquired based on the new features observed in the novel model,demonstrating the practicability of the proposed approach.The findings of this study can help for better evaluating well interference degree in multi-well systems combing PTA and RTA,which can reduce the uncertainty and improve the accuracy of the well interference analysis based on both field pressure and rate data.展开更多
The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal co...The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal conjugate fractures for representing the ''complexity'' of the network. Bifurcation of fractures is performed utilizing the Lindenmayer system based on fractal geometry to describe the fracture propagation pattern, density and network connectivity. Four controlling parameters are proposed to describe the details of complex fractures and stimulated reservoir volume(SRV). The results show that due to the multilevel feature of fractal fractures, the model could provide a simple method for contributing reservoir volume calibration. The primary-and second-stage fracture networks across the overall SRV are the main contributions to the production, while the induced fracture network just contributes another 20% in the late producing period. We also conduct simulation with respect to different refracturing cases and find that increasing the complexity of the fracture network provides better performance than only enhancing the fracture conductivity.展开更多
Well interference has become a common phenomenon with the increasing scale of horizontal well fracturing.Recent studies on well interference in horizontal wells do not properly reflect the physical model of the postfr...Well interference has become a common phenomenon with the increasing scale of horizontal well fracturing.Recent studies on well interference in horizontal wells do not properly reflect the physical model of the postfracturing well groups and the realistic fracturing process of infill wells.Establishing the correspondence between well interference causative factors and manifestations is of great significance for infill well deployment and secondary oil recovery.In this work,we develop a numerical model that considers low velocity non-Darcy seepage inshale reservoirs to study the inter-well interferencephenomenon that occurs in theSantanghufield,andconstruct an explicit hydraulic fracture and complex natural fracture network model with an embedded discrete fracture model,focusing on the effect of fracture network morphology on well interactions.The model also considers a multi-segment wellbore model to accommodate the effect of inter-well crossflow on wellbore tubular flow.The changes in formation pressure and water saturation during fracturing are performed by controlling the injection pressure and water injection rate.The result shows that the shape of the fracture network generated by the infill well with the old well determines the subsequent fluid and oil-increasing performance of the disturbed well.The synergistic production or competitive relationship formed by fractures with different connectivity between the two wells determines the positive and negative effects of the interference.The paper also investigates the adaptation study of water injection huff and puff schemes for well groups with different connectivity,and demonstrated a potential yield increase of up to 10.85%under adaptation injection.This method of identifying well interference based on the production dynamics of affected wells and the subsequent corresponding water injection method provides valuable references for the selection of secondary oil recovery measures.展开更多
The production performances of a well with a shale gas reservoir displaying a complex fracture network are simulated.In particular,a micro-seismic cloud diagram is used to describe the fracture network,and accordingly...The production performances of a well with a shale gas reservoir displaying a complex fracture network are simulated.In particular,a micro-seismic cloud diagram is used to describe the fracture network,and accordingly,a production model is introduced based on a multi-scale flow mechanism.A finite volume method is then exploited for the integration of the model equations.The effects of apparent permeability,conductivity,Langmuir volume,and bottom hole pressure on gas well production are studied accordingly.The simulation results show that ignoring the micro-scale flow mechanism of the shale gas leads to underestimating the well gas production.It is shown that after ten years of production,the cumulative gas production difference between the two scenarios with and without considering the micro-scale flow mechanisms is 19.5%.The greater the fracture conductivity,the higher the initial gas production of the gas well and the cumulative gas production.The larger the Langmuir volume,the higher the gas production rate and the cumulative gas production.With the reduction of the bottom hole pressure,the cumulative gas production increases,but the growth rate gradually decreases.展开更多
A seepage-geomechanical coupled embedded fracture flow model has been established for multi-field coupled simulation in tight oil reservoirs,revealing the patterns of change in pressure field,seepage field,and stress ...A seepage-geomechanical coupled embedded fracture flow model has been established for multi-field coupled simulation in tight oil reservoirs,revealing the patterns of change in pressure field,seepage field,and stress field after long-term water injection in tight oil reservoirs.Based on this,a technique for enhanced oil recovery(EOR)combining multi-field reconstruction and combination of displacement and imbibition in tight oil reservoirs has been proposed.The study shows that after long-term water flooding for tight oil development,the pressure diffusion range is limited,making it difficult to establish an effective displacement system.The variation in geostress exhibits diversity,with the change in horizontal minimum principal stress being greater than that in horizontal maximum principal stress,and the variation around the injection wells being more significant than that around the production wells.The deflection of geostress direction around injection wells is also large.The technology for EOR through multi-field reconstruction and combination of displacement and imbibition employs water injection wells converted to production and large-scale fracturing techniques to restructure the artificial fracture network system.Through a full lifecycle energy replenishment method of pre-fracturing energy supplementation,energy increase during fracturing,well soaking for energy storage,and combination of displacement and imbibition,it effectively addresses the issue of easy channeling of the injection medium and difficult energy replenishment after large-scale fracturing.By intensifying the imbibition effect through the coordination of multiple wells,it reconstructs the combined system of displacement and imbibition under a complex fracture network,transitioning from avoiding fractures to utilizing them,thereby improving microscopic sweep and oil displacement efficiencies.Field application in Block Yuan 284 of the Huaqing Oilfield in the Ordos Basin has demonstrated that this technology increases the recovery factor by 12 percentage points,enabling large scale and efficient development of tight oil.展开更多
Shales can form a complex fracture network during hydraulic fracturing, which greatly increases the stimulated reservoir volume (SRV) and thus significantly increases oil or gas production. It is therefore important t...Shales can form a complex fracture network during hydraulic fracturing, which greatly increases the stimulated reservoir volume (SRV) and thus significantly increases oil or gas production. It is therefore important to accurately predict the probability of formation of the hydraulic fracture network for shale gas exploration and exploitation. Conventional discriminant criteria are presented as the relationship curves of stress difference vs. intersection angle. However, these methods are inadequate for application in the field. In this study, an effective and quantitative prediction method relating to the probability of complex fracture network formation is proposed. First, a discriminant criterion of fracture network was derived. Secondly, Monte Carlo simulation was applied to calculate the probability of the formation of the complex fracture network. Then, the method was validated by applying it to individual wells of two active shale gas blocks in the Sichuan Basin, China. Results show that the probabilities of fracture network are 0.98 for well JY1 and 0.26 for well W204, which is consistent with the micro-seismic hydraulic fracturing monitoring and actual gas production. Finally, the method was further extended to apply for the regional scale of the Sichuan Basin, where the general probabilities of fracture network formation are 0.32–1 and 0.74–1 for Weiyuan and Jiaoshiba blocks, respectively. The Jiaoshiba block has, therefore, an overall higher probability for formation of fracture network than the Weiyuan block. The proposed method has the potential in further application to evaluation and prediction of hydraulic fracturing operations in shale reservoirs.展开更多
Coalbed methane(CBM)is an important unconventional natural gas.Exploitation of multilayered CBM reservoir is still facing the challenge of low production rate.Radial borehole fracturing,which integrates radial jet dri...Coalbed methane(CBM)is an important unconventional natural gas.Exploitation of multilayered CBM reservoir is still facing the challenge of low production rate.Radial borehole fracturing,which integrates radial jet drilling and hydraulic fracturing,is expected to create complex fracture networks in multilayers and enhance CBM recovery.The main purpose of this paper is to investigate the mechanisms and efficacy of radial borehole fracturing in increasing CBM production in multiple layers.First,a two-phase flow and multi-scale 3 D fracture network including radial laterals,hydraulic fractures and face/butt cleats model is established,and embedded discrete fracture model(EDFM)is applied to handle the complex fracture networks.Then,effects of natural-fracture nonuniform distribution are investigated to show the advantages of targeted stimulation for radial borehole fracturing.Finally,two field CBM wells located in eastern Yunnan-western Guizhou,China were presented to illuminate the stimulation efficiency by radial borehole fracturing.The results indicated that compared with vertical well fracturing,radial borehole fracturing can achieve higher gas/water daily production rate and cumulative gas/water production,approximately 2 times higher.Targeted communications to cleats and sweet spots and flexibility in designing radial borehole parameters in different layers so as to increase fracture-network complexity and connectivity are the major reasons for production enhancement of radial borehole fracturing.Furthermore,the integration of geology-engineering is vital for the decision of radial borehole fracturing designing scheme.The key findings of this paper could provide useful insights towards understanding the capability of radial borehole fracturing in developing CBM and coal-measure gas in multiple-thin layers.展开更多
基金funded by the National Natural Science Foundation of China(No.51974268)Open Fund of Key Laboratory of Ministry of Education for Improving Oil and Gas Recovery(NEPUEOR-2022-03)Research and Innovation Fund for Graduate Students of Southwest Petroleum University(No.2022KYCX005)。
文摘The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks.
基金The authors are grateful to the financial support from China Postdoctoral Science Foundation(2022M712645)Opening Fund of Key Laboratory of Enhanced Oil Recovery(Northeast Petroleum University),Ministry of Education(NEPU-EOR-2021-03).
文摘Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vitally important for reservoir effective development.Well interference has been historically investigated by pressure transient analysis,while it has shown that rate transient analysis has great potential in well interference diagnosis.However,the impact of complex fracture networks(CFNs)on rate transient behavior of parent well and child well in unconventional reservoirs is still not clear.To further investigate,this paper develops an integrated approach combining pressure and rate transient analysis for well interference diagnosis considering CFNs.To perform multi-well simulation considering CFNs,non-intrusive embedded discrete fracture model approach was applied for coupling fracture with reservoir models.The impact of CFN including natural fractures and frac-hits on pressure and rate transient behavior in multi-well system was investigated.On a logelog plot,interference flow and compound linear flow are two new flow regimes caused by nearby producers.When both NFs and frac-hits are present in the reservoir,frac-hits have a greater impact on well#1 which contains frac-hits,and NFs have greater impact on well#3 which does not have frac-hits.For all well producing circumstances,it might be challenging to see divergence during pseudosteady state flow brought on by frac-hits on the logelog plot.Besides,when NFs occur,reservoir depletion becomes noticeable in comparison to frac-hits in pressure distribution.Application of this integrated approach demonstrates that it works well to characterize the well interference among different multi-fractured horizontal wells in a well pad.Better reservoir evaluation can be acquired based on the new features observed in the novel model,demonstrating the practicability of the proposed approach.The findings of this study can help for better evaluating well interference degree in multi-well systems combing PTA and RTA,which can reduce the uncertainty and improve the accuracy of the well interference analysis based on both field pressure and rate data.
基金supported by National Natural Science Foundation of China(No.51674279)China Postdoctoral Science Foundation(No.2016M602227)a grant from National Science and Technology Major Project(No.2017ZX05049-006)
文摘The paper presents a novel hydraulic fracturing model for the characterization and simulation of the complex fracture network in shale gas reservoirs. We go beyond the existing method that uses planar or orthogonal conjugate fractures for representing the ''complexity'' of the network. Bifurcation of fractures is performed utilizing the Lindenmayer system based on fractal geometry to describe the fracture propagation pattern, density and network connectivity. Four controlling parameters are proposed to describe the details of complex fractures and stimulated reservoir volume(SRV). The results show that due to the multilevel feature of fractal fractures, the model could provide a simple method for contributing reservoir volume calibration. The primary-and second-stage fracture networks across the overall SRV are the main contributions to the production, while the induced fracture network just contributes another 20% in the late producing period. We also conduct simulation with respect to different refracturing cases and find that increasing the complexity of the fracture network provides better performance than only enhancing the fracture conductivity.
基金This work is supported by Open Fund Project“Study on Multiphase Flow Semi-Analytical Method for Horizontal Wells of Continental Shale Condensate Gas”of Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production Technology.
文摘Well interference has become a common phenomenon with the increasing scale of horizontal well fracturing.Recent studies on well interference in horizontal wells do not properly reflect the physical model of the postfracturing well groups and the realistic fracturing process of infill wells.Establishing the correspondence between well interference causative factors and manifestations is of great significance for infill well deployment and secondary oil recovery.In this work,we develop a numerical model that considers low velocity non-Darcy seepage inshale reservoirs to study the inter-well interferencephenomenon that occurs in theSantanghufield,andconstruct an explicit hydraulic fracture and complex natural fracture network model with an embedded discrete fracture model,focusing on the effect of fracture network morphology on well interactions.The model also considers a multi-segment wellbore model to accommodate the effect of inter-well crossflow on wellbore tubular flow.The changes in formation pressure and water saturation during fracturing are performed by controlling the injection pressure and water injection rate.The result shows that the shape of the fracture network generated by the infill well with the old well determines the subsequent fluid and oil-increasing performance of the disturbed well.The synergistic production or competitive relationship formed by fractures with different connectivity between the two wells determines the positive and negative effects of the interference.The paper also investigates the adaptation study of water injection huff and puff schemes for well groups with different connectivity,and demonstrated a potential yield increase of up to 10.85%under adaptation injection.This method of identifying well interference based on the production dynamics of affected wells and the subsequent corresponding water injection method provides valuable references for the selection of secondary oil recovery measures.
基金This work was supported by the National Natural Science Foundation of China(Grant No.52004237)Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(Grant No.2020CX020202)the Sichuan Science and Technology Program(No.2022JDJQ0009).
文摘The production performances of a well with a shale gas reservoir displaying a complex fracture network are simulated.In particular,a micro-seismic cloud diagram is used to describe the fracture network,and accordingly,a production model is introduced based on a multi-scale flow mechanism.A finite volume method is then exploited for the integration of the model equations.The effects of apparent permeability,conductivity,Langmuir volume,and bottom hole pressure on gas well production are studied accordingly.The simulation results show that ignoring the micro-scale flow mechanism of the shale gas leads to underestimating the well gas production.It is shown that after ten years of production,the cumulative gas production difference between the two scenarios with and without considering the micro-scale flow mechanisms is 19.5%.The greater the fracture conductivity,the higher the initial gas production of the gas well and the cumulative gas production.The larger the Langmuir volume,the higher the gas production rate and the cumulative gas production.With the reduction of the bottom hole pressure,the cumulative gas production increases,but the growth rate gradually decreases.
基金Supported by the Joint Fund Project of the National Natural Science Foundation of China(U22B2075).
文摘A seepage-geomechanical coupled embedded fracture flow model has been established for multi-field coupled simulation in tight oil reservoirs,revealing the patterns of change in pressure field,seepage field,and stress field after long-term water injection in tight oil reservoirs.Based on this,a technique for enhanced oil recovery(EOR)combining multi-field reconstruction and combination of displacement and imbibition in tight oil reservoirs has been proposed.The study shows that after long-term water flooding for tight oil development,the pressure diffusion range is limited,making it difficult to establish an effective displacement system.The variation in geostress exhibits diversity,with the change in horizontal minimum principal stress being greater than that in horizontal maximum principal stress,and the variation around the injection wells being more significant than that around the production wells.The deflection of geostress direction around injection wells is also large.The technology for EOR through multi-field reconstruction and combination of displacement and imbibition employs water injection wells converted to production and large-scale fracturing techniques to restructure the artificial fracture network system.Through a full lifecycle energy replenishment method of pre-fracturing energy supplementation,energy increase during fracturing,well soaking for energy storage,and combination of displacement and imbibition,it effectively addresses the issue of easy channeling of the injection medium and difficult energy replenishment after large-scale fracturing.By intensifying the imbibition effect through the coordination of multiple wells,it reconstructs the combined system of displacement and imbibition under a complex fracture network,transitioning from avoiding fractures to utilizing them,thereby improving microscopic sweep and oil displacement efficiencies.Field application in Block Yuan 284 of the Huaqing Oilfield in the Ordos Basin has demonstrated that this technology increases the recovery factor by 12 percentage points,enabling large scale and efficient development of tight oil.
基金the National Natural Science Foundation of China(Grant Nos.41872123 and 42125205).
文摘Shales can form a complex fracture network during hydraulic fracturing, which greatly increases the stimulated reservoir volume (SRV) and thus significantly increases oil or gas production. It is therefore important to accurately predict the probability of formation of the hydraulic fracture network for shale gas exploration and exploitation. Conventional discriminant criteria are presented as the relationship curves of stress difference vs. intersection angle. However, these methods are inadequate for application in the field. In this study, an effective and quantitative prediction method relating to the probability of complex fracture network formation is proposed. First, a discriminant criterion of fracture network was derived. Secondly, Monte Carlo simulation was applied to calculate the probability of the formation of the complex fracture network. Then, the method was validated by applying it to individual wells of two active shale gas blocks in the Sichuan Basin, China. Results show that the probabilities of fracture network are 0.98 for well JY1 and 0.26 for well W204, which is consistent with the micro-seismic hydraulic fracturing monitoring and actual gas production. Finally, the method was further extended to apply for the regional scale of the Sichuan Basin, where the general probabilities of fracture network formation are 0.32–1 and 0.74–1 for Weiyuan and Jiaoshiba blocks, respectively. The Jiaoshiba block has, therefore, an overall higher probability for formation of fracture network than the Weiyuan block. The proposed method has the potential in further application to evaluation and prediction of hydraulic fracturing operations in shale reservoirs.
基金supported by the National Natural Science Foundation of China(National R&D Program for Major Research Instruments,51827804)Youth Program of National Natural Science Foundation of China(52004299)National Science Foundation for Distinguished Young Scholars(51725404)
文摘Coalbed methane(CBM)is an important unconventional natural gas.Exploitation of multilayered CBM reservoir is still facing the challenge of low production rate.Radial borehole fracturing,which integrates radial jet drilling and hydraulic fracturing,is expected to create complex fracture networks in multilayers and enhance CBM recovery.The main purpose of this paper is to investigate the mechanisms and efficacy of radial borehole fracturing in increasing CBM production in multiple layers.First,a two-phase flow and multi-scale 3 D fracture network including radial laterals,hydraulic fractures and face/butt cleats model is established,and embedded discrete fracture model(EDFM)is applied to handle the complex fracture networks.Then,effects of natural-fracture nonuniform distribution are investigated to show the advantages of targeted stimulation for radial borehole fracturing.Finally,two field CBM wells located in eastern Yunnan-western Guizhou,China were presented to illuminate the stimulation efficiency by radial borehole fracturing.The results indicated that compared with vertical well fracturing,radial borehole fracturing can achieve higher gas/water daily production rate and cumulative gas/water production,approximately 2 times higher.Targeted communications to cleats and sweet spots and flexibility in designing radial borehole parameters in different layers so as to increase fracture-network complexity and connectivity are the major reasons for production enhancement of radial borehole fracturing.Furthermore,the integration of geology-engineering is vital for the decision of radial borehole fracturing designing scheme.The key findings of this paper could provide useful insights towards understanding the capability of radial borehole fracturing in developing CBM and coal-measure gas in multiple-thin layers.