The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.I...The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.In this paper,we introduce a Lie group that the Heisenberg group can be imbedded into and call it generalized complex Heisenberg.We investigate quaternionic analysis on the generalized complex Heisenberg.We also give the Penrose integral formula for k-CF functions and construct the tangential k-Cauchy-Fueter complex.展开更多
A theory of a class of higher order singular integral under the operator (L f) (u) =[u1 σf/σu1(u) - u1σf/σu1(u) + f(u)] is given. We transform the higher order singular integral to a usual Cauchy integr...A theory of a class of higher order singular integral under the operator (L f) (u) =[u1 σf/σu1(u) - u1σf/σu1(u) + f(u)] is given. We transform the higher order singular integral to a usual Cauchy integral, extend the permutation formula of the higher order singular integral deduced by Qian and Zhong in [4] to a general case, and discuss the regularization problem of the higher order singular integral equations with Cauchy kernel and variable coefficients on complex hypersphere.展开更多
With the accelerated development and utilization of urban underground space,the underground space design of complex based on rail transit has attracted much attention.By sorting out the integration concept and constru...With the accelerated development and utilization of urban underground space,the underground space design of complex based on rail transit has attracted much attention.By sorting out the integration concept and constructing the logical framework of integrated design,the integrated design strategy is proposed from the aspects of function,transportation,space and environment on the urban scale,and the evaluation points of integrated design effect are put forward from the aspects of accessibility,coordination,openness and symbolism.展开更多
The boundary integral equation method (BIEM) is now widely used in numerical studies on earthquake rupture dynamics, and is proved to be a powerful tool to deal with problems on complex fault system. However, since ...The boundary integral equation method (BIEM) is now widely used in numerical studies on earthquake rupture dynamics, and is proved to be a powerful tool to deal with problems on complex fault system. However, since this method heavily lies on the specific forms of Green's function and only the Green's function in full-space has a closed analytic expression, it is usually limited to a full-space medium. In this study, as a first step to extend this method to an arbitrary complex fault system in half-space, the boundary integral equations (BIEs) for dynamic strike-slip on vertical complex fault system in half-space are derived based on exact Green's function for isotropic and homogeneous half-space. Effect of the geometry of the complex fault system are dealt with carefully. Final BIEs is composed of two parts: contribution from full-space, which has been thoroughly investigated by Aochi and his co-workers by using the Green's function for full-space, and that from free surface, which is studied in detail in this study.展开更多
The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate reg...The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate regularized solutions is discussed. As an application of the method, an inverse problem in the two-dimensional wave-making problem of a flat plate is solved numerically, and a practical approach of choosing optimal regularization parameter is given.展开更多
This note illustrates the multidimensional dispersion relations that connect the real and imaginary parts of the matrixwhere z(p)) is the boundary value of the impedance
By means of the method of solid angle coefficients and the permutation formula on the building domain of complex biballs,direct solutions of some singular integral equations with variable coefficients are discussed an...By means of the method of solid angle coefficients and the permutation formula on the building domain of complex biballs,direct solutions of some singular integral equations with variable coefficients are discussed and the explicit formulas for these solutions are obtained.展开更多
First, this paper gives another integral representation an bounded convex domain in complex submanifold. Second, using this integral representation, the author easely gets the strengthen consequence of Elgueta.
Based on protein-DNA complex crystal structural data in up-to-date Nucleic Acid Database,the related parameters of DNA Kinetic Structure were investigated by Monte-Carlo Multiple Integrals on the base of modified DNA ...Based on protein-DNA complex crystal structural data in up-to-date Nucleic Acid Database,the related parameters of DNA Kinetic Structure were investigated by Monte-Carlo Multiple Integrals on the base of modified DNA structure statistical mechanical model,and time complexity and precision were analyzed on the calculated results.展开更多
This paper addresses the application of stochastic optimization approaches to the synthesis of heatintegrated complex distillation system, which is characterized by large-scale combinatorial feature. Conventionaland c...This paper addresses the application of stochastic optimization approaches to the synthesis of heatintegrated complex distillation system, which is characterized by large-scale combinatorial feature. Conventionaland complex columns, thermally coupled (linked) side strippers and side rectifiers as well as heat integration betweenthe different columns are simultaneously considered. The problem is formulated as an MINLP (mixed-integernonlinear programming) problem. A simulated annealing algorithm is proposed to deal with the MINLP problemand a shortcut method is applied to evaluate all required design parameters as well as the total cost function. Twoillustrating examples are presented.展开更多
In this paper, firstly using different method and technique we derive the cor-responding integral representation formulas of (0, q)(q 〉 0) differential forms for the twotypes of the bounded domains in complex sub...In this paper, firstly using different method and technique we derive the cor-responding integral representation formulas of (0, q)(q 〉 0) differential forms for the twotypes of the bounded domains in complex submanifolds with codimension-m. Secondly weobtain the unified integral representation formulas of (0, q)(q 〉 0) differential forms for thegeneral bounded domain in complex submanifold with codimension-m, which include Hatzi-afratis formula, i.e. Koppelman type integral formula for the bounded domain with smoothboundary in analytic varieties. In particular, when m -- 0, we obtain the unified integralrepresentation formulas of (0, q)(q 〉 0) differential forms for general bounded domain in Cn,which are the generalization and the embodiment of Koppelman-Leray formula.展开更多
Most of the reconstruction-based robust adaptive beamforming(RAB)algorithms require the covariance matrix reconstruction(CMR)by high-complexity integral computation.A Gauss-Legendre quadrature(GLQ)method with the high...Most of the reconstruction-based robust adaptive beamforming(RAB)algorithms require the covariance matrix reconstruction(CMR)by high-complexity integral computation.A Gauss-Legendre quadrature(GLQ)method with the highest algebraic precision in the interpolation-type quadrature is proposed to reduce the complexity.The interference angular sector in RAB is regarded as the GLQ integral range,and the zeros of the threeorder Legendre orthogonal polynomial is selected as the GLQ nodes.Consequently,the CMR can be efficiently obtained by simple summation with respect to the three GLQ nodes without integral.The new method has significantly reduced the complexity as compared to most state-of-the-art reconstruction-based RAB techniques,and it is able to provide the similar performance close to the optimal.These advantages are verified by numerical simulations.展开更多
The closure of the bounded domains D in Cnconsists of a chain of the slit spaces,and may be divided into two types. Based on the two types of bounded domains in C^n, firstly using different method and technique we der...The closure of the bounded domains D in Cnconsists of a chain of the slit spaces,and may be divided into two types. Based on the two types of bounded domains in C^n, firstly using different method and technique we derive the corresponding integral representation formulas of differentiable functions for complex n-m(0 ≤ m < n) dimensional analytic varieties in the two types of the bounded domains. Secondly we obtain the unified integral representation formulas of differentiable functions for complex n-m(0 ≤ m < n) dimensional analytic varieties in the general bounded domains. When functions are holomorphic, the integral formulas in this paper include formulas of Stout^([1]), Hatziafratis^([2]) and the author^([3]),and are the extension of all the integral representations for holomorphic functions in the existing papers to analytic varieties. In particular, when m = 0, firstly we gave the integral representation formulas of differentiable functions for the two types of bounded domains in C^n. Therefore they can make the concretion of Leray-Stokes formula. Secondly we obtain the unified integral representation formulas of differentiable functions for general bounded domains in C^n. So they can make the Leray-Stokes formula generalizations.展开更多
The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF me...The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.展开更多
Accurate boundary conditions of composite material plates with different holes are founded to settle boundary condition problems of complex holes by conformal mapping method upon the nonhomogeneous anisotropic elastic...Accurate boundary conditions of composite material plates with different holes are founded to settle boundary condition problems of complex holes by conformal mapping method upon the nonhomogeneous anisotropic elastic and complex function theory. And then the two stress functions required were founded on Cauchy integral by boundary conditions. The final stress distributions of opening structure and the analytical solution on composite material plate with rectangle hole and wing manholes were achieved. The influences on hole-edge stress concentration factors are discussed under different loads and fiber direction cases, and then contrast calculates are carried through FEM.展开更多
The numerical solutions to the singular integral equations obtained by the fracture mechanical analyses of a cracked wedge under three different conditions are considered. The three considered conditions are:(i) a rad...The numerical solutions to the singular integral equations obtained by the fracture mechanical analyses of a cracked wedge under three different conditions are considered. The three considered conditions are:(i) a radial crack on a wedge with a nonfinite radius under the traction-traction boundary condition,(ii) a radial crack on a wedge with a finite radius under the traction-traction boundary condition, and(iii) a radial crack on a finite radius wedge under the traction-displacement boundary condition. According to the boundary conditions, the extracted singular integral equations have different forms. Numerical methods are used to solve the obtained coupled singular integral equations, where the Gauss-Legendre and the Gauss-Chebyshev polynomials are used to approximate the responses of the singular integral equations. The results are presented in figures and compared with those obtained by the analytical response. The results show that the obtained Gauss-Chebyshev polynomial response is closer to the analytical response.展开更多
Given f being Holder continuous in a region GC. For the Cauchy principal integral where G is a smooth closed contour,lt is established that,if a sequence or smooth closed contours G(n ∈N ) smoothly convergent top,the...Given f being Holder continuous in a region GC. For the Cauchy principal integral where G is a smooth closed contour,lt is established that,if a sequence or smooth closed contours G(n ∈N ) smoothly convergent top,then the corresponding sequence I(Γm,f)is convergent to I (,f). Furthermore,when Γ is approximated by a sequence of complex cubic splines(Γ)interpolatory to Γ,the error is estimated.展开更多
The path integral Monte Carlo(PIMC) method is employed to study the thermal properties of C70 with one, two,and three H2 molecules confined in the cage, respectively. The interaction energies and vibrationally average...The path integral Monte Carlo(PIMC) method is employed to study the thermal properties of C70 with one, two,and three H2 molecules confined in the cage, respectively. The interaction energies and vibrationally averaged spatial distributions under different temperatures are calculated to evaluate the stabilities of(H2)n@C70(n = 1, 2, 3). The results show that(H2)2@C70is more stable than H2@C70. The interaction energy slowly changes in a large temperature range,so temperature has little effect on the stability of the system. For H2@C70and(H2)2@C70, the interaction energies keep negative; however, when three H2 molecules are in the cage, the interaction energy rapidly increases to a positive value.This implies that at most two H2 molecules can be trapped by C70. With an increase of temperature, the peak of the spatial distribution gradually shifts away from the center of the cage, but the maximum distance from the center of H2 molecule to the cage center is much smaller than the average radius of C70.展开更多
Let be a polynomial of degree n having all its zeros in , then for each , , with , Aziz and Ahemad (1996) proved that In this paper, we extend the above inequality to the class of polynomials , having all its zeros in...Let be a polynomial of degree n having all its zeros in , then for each , , with , Aziz and Ahemad (1996) proved that In this paper, we extend the above inequality to the class of polynomials , having all its zeros in , and obtain a generalization as well as refinement of the above result.展开更多
基金Supported by National Nature Science Foundation in China(12101564,11971425,11801508)Nature Science Foundation of Zhejiang province(LY22A010013)Domestic Visiting Scholar Teacher Professional Development Project(FX2021042)。
文摘The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.In this paper,we introduce a Lie group that the Heisenberg group can be imbedded into and call it generalized complex Heisenberg.We investigate quaternionic analysis on the generalized complex Heisenberg.We also give the Penrose integral formula for k-CF functions and construct the tangential k-Cauchy-Fueter complex.
基金supported by the Natural Science Foundation of Fujian Province of China(S0850029,2008J0206)Innovation Foundation of Xiamen University(XDKJCX20063019),the National Science Foundation of China (10771174)
文摘A theory of a class of higher order singular integral under the operator (L f) (u) =[u1 σf/σu1(u) - u1σf/σu1(u) + f(u)] is given. We transform the higher order singular integral to a usual Cauchy integral, extend the permutation formula of the higher order singular integral deduced by Qian and Zhong in [4] to a general case, and discuss the regularization problem of the higher order singular integral equations with Cauchy kernel and variable coefficients on complex hypersphere.
文摘With the accelerated development and utilization of urban underground space,the underground space design of complex based on rail transit has attracted much attention.By sorting out the integration concept and constructing the logical framework of integrated design,the integrated design strategy is proposed from the aspects of function,transportation,space and environment on the urban scale,and the evaluation points of integrated design effect are put forward from the aspects of accessibility,coordination,openness and symbolism.
基金supported by the President Fund of GUCAS(No. O85101CM03)National Natural Science Foundation of China(Nos.90715019 and 40821062)partially by National Basic Research Program of China (No.2004CB418404)
文摘The boundary integral equation method (BIEM) is now widely used in numerical studies on earthquake rupture dynamics, and is proved to be a powerful tool to deal with problems on complex fault system. However, since this method heavily lies on the specific forms of Green's function and only the Green's function in full-space has a closed analytic expression, it is usually limited to a full-space medium. In this study, as a first step to extend this method to an arbitrary complex fault system in half-space, the boundary integral equations (BIEs) for dynamic strike-slip on vertical complex fault system in half-space are derived based on exact Green's function for isotropic and homogeneous half-space. Effect of the geometry of the complex fault system are dealt with carefully. Final BIEs is composed of two parts: contribution from full-space, which has been thoroughly investigated by Aochi and his co-workers by using the Green's function for full-space, and that from free surface, which is studied in detail in this study.
文摘The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate regularized solutions is discussed. As an application of the method, an inverse problem in the two-dimensional wave-making problem of a flat plate is solved numerically, and a practical approach of choosing optimal regularization parameter is given.
文摘This note illustrates the multidimensional dispersion relations that connect the real and imaginary parts of the matrixwhere z(p)) is the boundary value of the impedance
基金Supported by the NNSF of china(11171298)SuppoSed by the Natural Science Foundation of Zhejiang Province(Y6110425,Y604563)
文摘By means of the method of solid angle coefficients and the permutation formula on the building domain of complex biballs,direct solutions of some singular integral equations with variable coefficients are discussed and the explicit formulas for these solutions are obtained.
文摘First, this paper gives another integral representation an bounded convex domain in complex submanifold. Second, using this integral representation, the author easely gets the strengthen consequence of Elgueta.
基金Supported by Inner Mongolia Natural Science Foundation(200711020112)Innovation Fundation of Inner Mongolia University of Science and Technology (2009NC064)~~
文摘Based on protein-DNA complex crystal structural data in up-to-date Nucleic Acid Database,the related parameters of DNA Kinetic Structure were investigated by Monte-Carlo Multiple Integrals on the base of modified DNA structure statistical mechanical model,and time complexity and precision were analyzed on the calculated results.
基金Supported by the National Fundamental Research Development Program of China (No. 2000026308).
文摘This paper addresses the application of stochastic optimization approaches to the synthesis of heatintegrated complex distillation system, which is characterized by large-scale combinatorial feature. Conventionaland complex columns, thermally coupled (linked) side strippers and side rectifiers as well as heat integration betweenthe different columns are simultaneously considered. The problem is formulated as an MINLP (mixed-integernonlinear programming) problem. A simulated annealing algorithm is proposed to deal with the MINLP problemand a shortcut method is applied to evaluate all required design parameters as well as the total cost function. Twoillustrating examples are presented.
文摘In this paper, firstly using different method and technique we derive the cor-responding integral representation formulas of (0, q)(q 〉 0) differential forms for the twotypes of the bounded domains in complex submanifolds with codimension-m. Secondly weobtain the unified integral representation formulas of (0, q)(q 〉 0) differential forms for thegeneral bounded domain in complex submanifold with codimension-m, which include Hatzi-afratis formula, i.e. Koppelman type integral formula for the bounded domain with smoothboundary in analytic varieties. In particular, when m -- 0, we obtain the unified integralrepresentation formulas of (0, q)(q 〉 0) differential forms for general bounded domain in Cn,which are the generalization and the embodiment of Koppelman-Leray formula.
基金supported by the National Natural Science Foundation of China(618711496197115962071144)。
文摘Most of the reconstruction-based robust adaptive beamforming(RAB)algorithms require the covariance matrix reconstruction(CMR)by high-complexity integral computation.A Gauss-Legendre quadrature(GLQ)method with the highest algebraic precision in the interpolation-type quadrature is proposed to reduce the complexity.The interference angular sector in RAB is regarded as the GLQ integral range,and the zeros of the threeorder Legendre orthogonal polynomial is selected as the GLQ nodes.Consequently,the CMR can be efficiently obtained by simple summation with respect to the three GLQ nodes without integral.The new method has significantly reduced the complexity as compared to most state-of-the-art reconstruction-based RAB techniques,and it is able to provide the similar performance close to the optimal.These advantages are verified by numerical simulations.
文摘The closure of the bounded domains D in Cnconsists of a chain of the slit spaces,and may be divided into two types. Based on the two types of bounded domains in C^n, firstly using different method and technique we derive the corresponding integral representation formulas of differentiable functions for complex n-m(0 ≤ m < n) dimensional analytic varieties in the two types of the bounded domains. Secondly we obtain the unified integral representation formulas of differentiable functions for complex n-m(0 ≤ m < n) dimensional analytic varieties in the general bounded domains. When functions are holomorphic, the integral formulas in this paper include formulas of Stout^([1]), Hatziafratis^([2]) and the author^([3]),and are the extension of all the integral representations for holomorphic functions in the existing papers to analytic varieties. In particular, when m = 0, firstly we gave the integral representation formulas of differentiable functions for the two types of bounded domains in C^n. Therefore they can make the concretion of Leray-Stokes formula. Secondly we obtain the unified integral representation formulas of differentiable functions for general bounded domains in C^n. So they can make the Leray-Stokes formula generalizations.
文摘The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.
基金This project is supported by National Natural Science Foundation of China(No.50175031).
文摘Accurate boundary conditions of composite material plates with different holes are founded to settle boundary condition problems of complex holes by conformal mapping method upon the nonhomogeneous anisotropic elastic and complex function theory. And then the two stress functions required were founded on Cauchy integral by boundary conditions. The final stress distributions of opening structure and the analytical solution on composite material plate with rectangle hole and wing manholes were achieved. The influences on hole-edge stress concentration factors are discussed under different loads and fiber direction cases, and then contrast calculates are carried through FEM.
文摘The numerical solutions to the singular integral equations obtained by the fracture mechanical analyses of a cracked wedge under three different conditions are considered. The three considered conditions are:(i) a radial crack on a wedge with a nonfinite radius under the traction-traction boundary condition,(ii) a radial crack on a wedge with a finite radius under the traction-traction boundary condition, and(iii) a radial crack on a finite radius wedge under the traction-displacement boundary condition. According to the boundary conditions, the extracted singular integral equations have different forms. Numerical methods are used to solve the obtained coupled singular integral equations, where the Gauss-Legendre and the Gauss-Chebyshev polynomials are used to approximate the responses of the singular integral equations. The results are presented in figures and compared with those obtained by the analytical response. The results show that the obtained Gauss-Chebyshev polynomial response is closer to the analytical response.
文摘Given f being Holder continuous in a region GC. For the Cauchy principal integral where G is a smooth closed contour,lt is established that,if a sequence or smooth closed contours G(n ∈N ) smoothly convergent top,then the corresponding sequence I(Γm,f)is convergent to I (,f). Furthermore,when Γ is approximated by a sequence of complex cubic splines(Γ)interpolatory to Γ,the error is estimated.
基金supported by the National Natural Science Foundation of China(Grant Nos.11474207 and 11374217)
文摘The path integral Monte Carlo(PIMC) method is employed to study the thermal properties of C70 with one, two,and three H2 molecules confined in the cage, respectively. The interaction energies and vibrationally averaged spatial distributions under different temperatures are calculated to evaluate the stabilities of(H2)n@C70(n = 1, 2, 3). The results show that(H2)2@C70is more stable than H2@C70. The interaction energy slowly changes in a large temperature range,so temperature has little effect on the stability of the system. For H2@C70and(H2)2@C70, the interaction energies keep negative; however, when three H2 molecules are in the cage, the interaction energy rapidly increases to a positive value.This implies that at most two H2 molecules can be trapped by C70. With an increase of temperature, the peak of the spatial distribution gradually shifts away from the center of the cage, but the maximum distance from the center of H2 molecule to the cage center is much smaller than the average radius of C70.
文摘Let be a polynomial of degree n having all its zeros in , then for each , , with , Aziz and Ahemad (1996) proved that In this paper, we extend the above inequality to the class of polynomials , having all its zeros in , and obtain a generalization as well as refinement of the above result.