This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent ...This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.展开更多
Considering the Cauchy problem for the critical complex Ginzburg-Landau equation in H1(Rn), we shall show the asymptotic behavior for its solutions in C(0, ?;H1(Rn)) ∩ L2(0, ?;H1,2n/(n-2)(R2)), n≥3. Analogous result...Considering the Cauchy problem for the critical complex Ginzburg-Landau equation in H1(Rn), we shall show the asymptotic behavior for its solutions in C(0, ?;H1(Rn)) ∩ L2(0, ?;H1,2n/(n-2)(R2)), n≥3. Analogous results also hold in the case that the nonlinearity has the subcritical power in H1(Rn), n≥1.展开更多
This paper focuses on a fast and high-order finite difference method for two-dimensional space-fractional complex Ginzburg-Landau equations.We firstly establish a three-level finite difference scheme for the time vari...This paper focuses on a fast and high-order finite difference method for two-dimensional space-fractional complex Ginzburg-Landau equations.We firstly establish a three-level finite difference scheme for the time variable,followed by the linearized technique of the nonlinear term.Then the fourth-order compact finite difference method is employed to discretize the spatial variables.Hence the accuracy of the discretization is O(τ^(2)+h^(4)_(1)+h^(4)_(2))in L_(2)-norm,where τ is the temporal step-size,both h_(1) and h_(2) denote spatial mesh sizes in x-and y-directions,respectively.The rigorous theoretical analysis,including the uniqueness,the almost unconditional stability,and the convergence,is studied via the energy argument.Practically,the discretized system holds the block Toeplitz structure.Therefore,the coefficient Toeplitz-like matrix only requires O(M_(1)M_(2)) memory storage,and the matrix-vector multiplication can be carried out in O(M_(1)M_(2))(log M_(1)+log M_(2))computational complexity by the fast Fourier transformation,where M_(1) and M_(2) denote the numbers of the spatial grids in two different directions.In order to solve the resulting Toeplitz-like system quickly,an efficient preconditioner with the Krylov subspace method is proposed to speed up the iteration rate.Numerical results are given to demonstrate the well performance of the proposed method.展开更多
The wave propagation in the one-dimensional complex Ginzbur-Landau equation (CGLE) is studied by considering a wave source at the system boundary. A special propagation region, which is an island-shaped zone surroun...The wave propagation in the one-dimensional complex Ginzbur-Landau equation (CGLE) is studied by considering a wave source at the system boundary. A special propagation region, which is an island-shaped zone surrounded by the defect turbulence in the system parameter space, is observed in our numerical experiment. The wave signal spreads in the whole space with a novel amplitude wave pattern in the area. The relevant factors of the pattern formation, such as the wave speed, the maximum propagating distance and the oscillatory frequency, are studied in detail. The stability and the generality of the region are testified by adopting various initial conditions. This finding of the amplitude pattern extends the wave propagation region in the parameter space and presents a new signal transmission mode, and is therefore expected to be of much importance.展开更多
Applying Nevanlinna theory of the value distribution of meromorphic functions, we mainly study the growth and some other properties of meromorphic solutions of the type of system of complex differential and difference...Applying Nevanlinna theory of the value distribution of meromorphic functions, we mainly study the growth and some other properties of meromorphic solutions of the type of system of complex differential and difference equations of the following form {j=1∑nαj(z)f1(λj1)(z+cj)=R2(z,f2(z)),j=1∑nβj(z)f2(λj2)(z+cj)=R1(z,f1(z)). where λij (j = 1, 2,…, n; i = 1, 2) are finite non-negative integers, and cj (j = 1, 2,… , n) are distinct, nonzero complex numbers, αj(z), βj(z) (j = 1,2,… ,n) are small functions relative to fi(z) (i =1, 2) respectively, Ri(z, f(z)) (i = 1, 2) are rational in fi(z) (i =1, 2) with coefficients which are small functions of fi(z) (i = 1, 2) respectively.展开更多
In this article, we study the complex oscillation problems of entire solutions to homogeneous and nonhomogeneous linear difference equations, and obtain some relations of the exponent of convergence of zeros and the o...In this article, we study the complex oscillation problems of entire solutions to homogeneous and nonhomogeneous linear difference equations, and obtain some relations of the exponent of convergence of zeros and the order of growth of entire solutions to complex linear difference equations.展开更多
In this paper, exact and numerical solutions are calculated for discrete complex Ginzburg-Landau equation with initial condition by considering the modified Adomian decomposition method (mADM), which is an efficient...In this paper, exact and numerical solutions are calculated for discrete complex Ginzburg-Landau equation with initial condition by considering the modified Adomian decomposition method (mADM), which is an efficient method and does not need linearization, weak nonlinearity assumptions or perturbation theory. The numerical solutions are also compared with their corresponding analytical solutions. It is shown that a very good approximation is achieved with the analytical solutions. Finally, the modulational instability is investigated and the corresponding condition is given.展开更多
In this article, we mainly investigate the behavior of systems of complex differential equations when we add some condition to the quality of the solutions, and obtain an interesting result, which extends Gaekstatter ...In this article, we mainly investigate the behavior of systems of complex differential equations when we add some condition to the quality of the solutions, and obtain an interesting result, which extends Gaekstatter and Laine's result concerning complex differential equations to the systems of algebraic differential equations.展开更多
In this paper, authors discuss the numerical methods of general discontinuous boundary value problems for elliptic complex equations of first order, They first give the well posedness of general discontinuous boundary...In this paper, authors discuss the numerical methods of general discontinuous boundary value problems for elliptic complex equations of first order, They first give the well posedness of general discontinuous boundary value problems, reduce the discontinuous boundary value problems to a variation problem, and then find the numerical solutions of above problem by the finite element method. Finally authors give some error-estimates of the foregoing numerical solutions.展开更多
By using the three-dimensional complex Ginzburg--Landau equation with cubic--quintic nonlinearity, this paper numerically investigates the interactions between optical bullets with different velocities in a dissipativ...By using the three-dimensional complex Ginzburg--Landau equation with cubic--quintic nonlinearity, this paper numerically investigates the interactions between optical bullets with different velocities in a dissipative system. The results reveal an abundance of interesting behaviours relating to the velocities of bullets: merging of the optical bullets into a single one at small velocities; periodic collisions at large velocities and disappearance of two bullets after several collisions in an intermediate region of velocity. Finally, it also reports that an extra bullet derives from the collision of optical bullets when optical bullets are at small velocities but with high energies.展开更多
Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained thro...Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.展开更多
Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the d...Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the dependent variable transformations and symbolic computation, GCCKdV equations are transformed into their bilinear forms, based on which the one- and two-soliton solutions are obtained. Through the interactions of two solitons, the regular elastic collision are shown. When the wave numbers are complex, three kinds of solitonie collisions are presented: (i) two solitons merge and separate from each other periodically; (ii) two solitons exhibit the attraction and repulsion nearly twice, and finally separate from each other after such type of interaction; (iii) two solitons are ftuctuant in the central region of the collision. Propagation features of solitons are investigated with the effects of the coefficients in the GCCKdV equations considered. Velocity of soliton increase with the a increasing. Amplitude of v increase with the a increasing and decrease with the β increasing.展开更多
For entire or meromorphic function f,a value θ∈[0,2π)is called a Julia limiting direction if there is an unbounded sequence{z_(n)}in the Julia set satisfying limn→∞ arg z_(n)=θ.Our main result is on the entire s...For entire or meromorphic function f,a value θ∈[0,2π)is called a Julia limiting direction if there is an unbounded sequence{z_(n)}in the Julia set satisfying limn→∞ arg z_(n)=θ.Our main result is on the entire solution f of P(z,f)+F(z)f^(s)=0,where P(z,f)is a differential polynomial of f with entire coefficients of growth smaller than that of the entire transcendental F,with the integer s being no more than the minimum degree of all differential monomials in P(z,f). We observe that Julia limiting directions of f partly come from the directions in which F grows quickly.展开更多
In this paper, exact solutions are derived for four coupled complex nonlinear different equations by using simplified transformation method and algebraic equations.
The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theore...The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theorems on the existence of solutions are obtained, which perfect the solution theory of linear complex differential equations.展开更多
The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF me...The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.展开更多
A new concept of an equi-attractor is introduced, and defined by the minimal compact set that attracts bounded sets uniformly in the past, for a non-autonomous dynam- ical system. It is shown that the compact equi-att...A new concept of an equi-attractor is introduced, and defined by the minimal compact set that attracts bounded sets uniformly in the past, for a non-autonomous dynam- ical system. It is shown that the compact equi-attraction implies the backward compactness of a pullback attractor. Also, an eventually equi-continuous and strongly bounded process has an equi-attractor if and only if it is strongly point dissipative and strongly asymptotically compact. Those results primely strengthen the known existence result of a backward bounded pullback attractor in the literature. Finally, the theoretical criteria are applied to prove the existence of both equi-attractor and backward compact attractor for a Ginzburg-Landau equation with some varying coefficients and a backward tempered external force.展开更多
Several approximate methods have been used to find approximate solutions of elliptic systems of first order equations. One common method is the Newton imbedding approach, i.e. the parameter extension method. In this a...Several approximate methods have been used to find approximate solutions of elliptic systems of first order equations. One common method is the Newton imbedding approach, i.e. the parameter extension method. In this article, we discuss approximate solutions to discontinuous Riemann-Hilbert boundary value problems, which have various applications in mechanics and physics. We first formulate the discontinuous Riemann-Hilbert problem for elliptic systems of first order complex equations in multiply connected domains and its modified well-posedness, then use the parameter extensional method to find approximate solutions to the modified boundary value problem for elliptic complex systems of first order equations, and then provide the error estimate of approximate solutions for the discontinuous boundary value problem.展开更多
In this paper, we introduce a Hermite operational matrix collocation method for solving higher-order linear complex differential equations in rectangular or elliptic domains. We show that based on a linear algebra the...In this paper, we introduce a Hermite operational matrix collocation method for solving higher-order linear complex differential equations in rectangular or elliptic domains. We show that based on a linear algebra theorem, the use of different polynomials such as Hermite, Bessel and Taylor in polynomial collocation methods for solving differential equations leads to an equal solution, and the difference in the numerical results arises from the difference in the coefficient matrix of final linear systems of equations. Some numerical examples will also be given.展开更多
This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
基金supported by the National Natural Science Foundation of China(12126318,12126302).
文摘This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.
基金This work was supported in part by the National Natural Science Foundation of China (Grant No. 19901007).
文摘Considering the Cauchy problem for the critical complex Ginzburg-Landau equation in H1(Rn), we shall show the asymptotic behavior for its solutions in C(0, ?;H1(Rn)) ∩ L2(0, ?;H1,2n/(n-2)(R2)), n≥3. Analogous results also hold in the case that the nonlinearity has the subcritical power in H1(Rn), n≥1.
基金Q.Zhang was partially supported by Natural Science Foundation of Zhejiang Province(Grant No.LY19A010026)Zhejiang Province“Yucai”Project(2019),Natural Science Foundation of China(Grant No.11501514)+4 种基金Fundamental Research Funds of Zhejiang Sci-Tech University(Grant 2019Q072)L.Zhang was partially supported by research from Xuzhou University of Technology(Grant XKY201530)the"Peiyu"Project from Xuzhou University of Technology(Grant XKY2019104)H.Sun was supported in part by research grants of the Science and Technology Development Fund,Macao SAR(File no.0118/2018/A3)MYRG2018-00015-FST from the University of Macao.
文摘This paper focuses on a fast and high-order finite difference method for two-dimensional space-fractional complex Ginzburg-Landau equations.We firstly establish a three-level finite difference scheme for the time variable,followed by the linearized technique of the nonlinear term.Then the fourth-order compact finite difference method is employed to discretize the spatial variables.Hence the accuracy of the discretization is O(τ^(2)+h^(4)_(1)+h^(4)_(2))in L_(2)-norm,where τ is the temporal step-size,both h_(1) and h_(2) denote spatial mesh sizes in x-and y-directions,respectively.The rigorous theoretical analysis,including the uniqueness,the almost unconditional stability,and the convergence,is studied via the energy argument.Practically,the discretized system holds the block Toeplitz structure.Therefore,the coefficient Toeplitz-like matrix only requires O(M_(1)M_(2)) memory storage,and the matrix-vector multiplication can be carried out in O(M_(1)M_(2))(log M_(1)+log M_(2))computational complexity by the fast Fourier transformation,where M_(1) and M_(2) denote the numbers of the spatial grids in two different directions.In order to solve the resulting Toeplitz-like system quickly,an efficient preconditioner with the Krylov subspace method is proposed to speed up the iteration rate.Numerical results are given to demonstrate the well performance of the proposed method.
文摘The wave propagation in the one-dimensional complex Ginzbur-Landau equation (CGLE) is studied by considering a wave source at the system boundary. A special propagation region, which is an island-shaped zone surrounded by the defect turbulence in the system parameter space, is observed in our numerical experiment. The wave signal spreads in the whole space with a novel amplitude wave pattern in the area. The relevant factors of the pattern formation, such as the wave speed, the maximum propagating distance and the oscillatory frequency, are studied in detail. The stability and the generality of the region are testified by adopting various initial conditions. This finding of the amplitude pattern extends the wave propagation region in the parameter space and presents a new signal transmission mode, and is therefore expected to be of much importance.
基金supported by the National Natural Science Foundation of China(10471067)NSF of Guangdong Province(04010474)
文摘Applying Nevanlinna theory of the value distribution of meromorphic functions, we mainly study the growth and some other properties of meromorphic solutions of the type of system of complex differential and difference equations of the following form {j=1∑nαj(z)f1(λj1)(z+cj)=R2(z,f2(z)),j=1∑nβj(z)f2(λj2)(z+cj)=R1(z,f1(z)). where λij (j = 1, 2,…, n; i = 1, 2) are finite non-negative integers, and cj (j = 1, 2,… , n) are distinct, nonzero complex numbers, αj(z), βj(z) (j = 1,2,… ,n) are small functions relative to fi(z) (i =1, 2) respectively, Ri(z, f(z)) (i = 1, 2) are rational in fi(z) (i =1, 2) with coefficients which are small functions of fi(z) (i = 1, 2) respectively.
基金supported by the National Natural Science Foundation of China (11171119 and 10871076)
文摘In this article, we study the complex oscillation problems of entire solutions to homogeneous and nonhomogeneous linear difference equations, and obtain some relations of the exponent of convergence of zeros and the order of growth of entire solutions to complex linear difference equations.
基金supported by National Natural Science Foundation of China under Grant No. 10672147
文摘In this paper, exact and numerical solutions are calculated for discrete complex Ginzburg-Landau equation with initial condition by considering the modified Adomian decomposition method (mADM), which is an efficient method and does not need linearization, weak nonlinearity assumptions or perturbation theory. The numerical solutions are also compared with their corresponding analytical solutions. It is shown that a very good approximation is achieved with the analytical solutions. Finally, the modulational instability is investigated and the corresponding condition is given.
基金Project Supported by the Natural Science Foundation of China(10471065)the Natural Science Foundation of Guangdong Province(04010474)
文摘In this article, we mainly investigate the behavior of systems of complex differential equations when we add some condition to the quality of the solutions, and obtain an interesting result, which extends Gaekstatter and Laine's result concerning complex differential equations to the systems of algebraic differential equations.
文摘In this paper, authors discuss the numerical methods of general discontinuous boundary value problems for elliptic complex equations of first order, They first give the well posedness of general discontinuous boundary value problems, reduce the discontinuous boundary value problems to a variation problem, and then find the numerical solutions of above problem by the finite element method. Finally authors give some error-estimates of the foregoing numerical solutions.
基金Project supported by the Key Project of the Educational Department of Hunan Province of China (Grant No. 04A058)the General Project of the Educational Department of Hunan Province of China (Grant No. 07C754)
文摘By using the three-dimensional complex Ginzburg--Landau equation with cubic--quintic nonlinearity, this paper numerically investigates the interactions between optical bullets with different velocities in a dissipative system. The results reveal an abundance of interesting behaviours relating to the velocities of bullets: merging of the optical bullets into a single one at small velocities; periodic collisions at large velocities and disappearance of two bullets after several collisions in an intermediate region of velocity. Finally, it also reports that an extra bullet derives from the collision of optical bullets when optical bullets are at small velocities but with high energies.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12161061)the Fundamental Research Funds for the Inner Mongolia University of Finance and Economics (Grant No. NCYWT23036)+2 种基金the Young Innovative and Entrepreneurial Talents of the Inner Mongolia Grassland Talents Project in 2022,Autonomous Region “Five Major Tasks” Research Special Project for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. NCXWD2422)High Quality Research Achievement Cultivation Fund for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. GZCG2426)the Talent Development Fund of Inner Mongolia Autonomous Region, China。
文摘Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.
基金*Supported by the National Natural Science Foundation of China under Grant No. 60772023, by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-07-001, Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901, and by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006, Chinese Ministry of Education.
文摘Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the dependent variable transformations and symbolic computation, GCCKdV equations are transformed into their bilinear forms, based on which the one- and two-soliton solutions are obtained. Through the interactions of two solitons, the regular elastic collision are shown. When the wave numbers are complex, three kinds of solitonie collisions are presented: (i) two solitons merge and separate from each other periodically; (ii) two solitons exhibit the attraction and repulsion nearly twice, and finally separate from each other after such type of interaction; (iii) two solitons are ftuctuant in the central region of the collision. Propagation features of solitons are investigated with the effects of the coefficients in the GCCKdV equations considered. Velocity of soliton increase with the a increasing. Amplitude of v increase with the a increasing and decrease with the β increasing.
基金This work was supported by the National Natural Science Foundation of China(11771090,11901311)Natural Sciences Foundation of Shanghai(17ZR1402900).
文摘For entire or meromorphic function f,a value θ∈[0,2π)is called a Julia limiting direction if there is an unbounded sequence{z_(n)}in the Julia set satisfying limn→∞ arg z_(n)=θ.Our main result is on the entire solution f of P(z,f)+F(z)f^(s)=0,where P(z,f)is a differential polynomial of f with entire coefficients of growth smaller than that of the entire transcendental F,with the integer s being no more than the minimum degree of all differential monomials in P(z,f). We observe that Julia limiting directions of f partly come from the directions in which F grows quickly.
文摘In this paper, exact solutions are derived for four coupled complex nonlinear different equations by using simplified transformation method and algebraic equations.
基金Supported by Guangdong Natural Science Foundation(2015A030313628,S2012010010376)Training plan for Distinguished Young Teachers in Higher Education of Guangdong(Yqgdufe1405)+1 种基金Guangdong Education Science Planning Project(2014GXJK091,GDJG20142304)the National Natural Science Foundation of China(11301140,11101096)
文摘The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theorems on the existence of solutions are obtained, which perfect the solution theory of linear complex differential equations.
文摘The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.
基金supported by the National Natural Science Foundation of China(11571283)supported by Natural Science Foundation of Guizhou Province
文摘A new concept of an equi-attractor is introduced, and defined by the minimal compact set that attracts bounded sets uniformly in the past, for a non-autonomous dynam- ical system. It is shown that the compact equi-attraction implies the backward compactness of a pullback attractor. Also, an eventually equi-continuous and strongly bounded process has an equi-attractor if and only if it is strongly point dissipative and strongly asymptotically compact. Those results primely strengthen the known existence result of a backward bounded pullback attractor in the literature. Finally, the theoretical criteria are applied to prove the existence of both equi-attractor and backward compact attractor for a Ginzburg-Landau equation with some varying coefficients and a backward tempered external force.
文摘Several approximate methods have been used to find approximate solutions of elliptic systems of first order equations. One common method is the Newton imbedding approach, i.e. the parameter extension method. In this article, we discuss approximate solutions to discontinuous Riemann-Hilbert boundary value problems, which have various applications in mechanics and physics. We first formulate the discontinuous Riemann-Hilbert problem for elliptic systems of first order complex equations in multiply connected domains and its modified well-posedness, then use the parameter extensional method to find approximate solutions to the modified boundary value problem for elliptic complex systems of first order equations, and then provide the error estimate of approximate solutions for the discontinuous boundary value problem.
文摘In this paper, we introduce a Hermite operational matrix collocation method for solving higher-order linear complex differential equations in rectangular or elliptic domains. We show that based on a linear algebra theorem, the use of different polynomials such as Hermite, Bessel and Taylor in polynomial collocation methods for solving differential equations leads to an equal solution, and the difference in the numerical results arises from the difference in the coefficient matrix of final linear systems of equations. Some numerical examples will also be given.
基金Supported by the Natural Science Foundation of Guangdong Province(04010474) Supported by the Foundation of the Education Department of Anhui Province for Outstanding Young Teachers in University(2011SQRL172)
文摘This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.