Consider the real, simply-connected, connected, s-step nilpotent Lie group G endowed with a left-invariant, integrable almost complex structure J, which is nilpotent. Consider the simply-connected, connected nilpotent...Consider the real, simply-connected, connected, s-step nilpotent Lie group G endowed with a left-invariant, integrable almost complex structure J, which is nilpotent. Consider the simply-connected, connected nilpotent Lie group Gk, defined by the nilpotent Lie algebra g/ak, where g is the Lie algebra of G, and ak is an ideal of g. Then, J gives rise to an almost complex structure Jk on Gk. The main conclusion obtained is as follows: if the almost complex structure J of a nilpotent Lie group G is nilpotent, then J can give rise to a left-invariant integrable almost complex structure Jk on the nilpotent Lie group Gk, and Jk is also nilpotent.展开更多
Analytic atlases on <img src="Edit_948e45b7-cbef-425e-bb79-28648b859994.png" width="23" height="22" alt="" /> can be easily defined making it an <em>n</em>-dim...Analytic atlases on <img src="Edit_948e45b7-cbef-425e-bb79-28648b859994.png" width="23" height="22" alt="" /> can be easily defined making it an <em>n</em>-dimensional complex manifold. Then with the help of bi-M<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span>bius transformations in complex coordinates Abelian groups are constructed making this manifold a Lie group. Actions of Lie groups on differentiable manifolds are well known and serve different purposes. We have introduced in previous works actions of Lie groups on non orientable Klein surfaces. The purpose of this work is to extend those studies to non orientable <em>n</em>-dimensional complex manifolds. Such manifolds are obtained by factorizing <img src="Edit_7e5721ee-bb7f-4224-bd52-7d4641ac1c73.png" width="23" height="22" alt="" /> with the two elements group of a fixed point free antianalytic involution of <img src="Edit_ddfdac64-b296-48c5-9bb2-932eb3d76008.png" width="23" height="22" alt="" />. Involutions <strong>h(z)</strong> of this kind are obtained linearly by composing special M<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span>bius transformations of the planes with the mapping <img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="89" height="24" alt="" /><img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="85" height="22" alt="" />. A convenient partition of <img src="Edit_9e899708-41b0-4351-a12b-cc6efb5b1581.png" width="23" height="22" alt="" /> is performed which helps defining an internal operation on <img src="Edit_7cd42987-68f8-4e4c-9382-cbc68b56377e.png" width="49" height="26" alt="" /> and finally actions of the previously defined Lie groups on the non orientable manifold <img src="Edit_5740b48c-f9ea-438d-a87d-8cdc1f83662b.png" width="49" height="25" alt="" /> are displayed.展开更多
We extend the Poincaré group to the complex Minkowski space-time. Special attention is paid to the corresponding algebra that we achieve through matrices as well as differential operators. We also point out the g...We extend the Poincaré group to the complex Minkowski space-time. Special attention is paid to the corresponding algebra that we achieve through matrices as well as differential operators. We also point out the generalizations of the two Casimir operators.展开更多
Lie groups of bi-M<span style="white-space:nowrap;">ö</span>bius transformations are known and their actions on non orientable <em>n</em>-dimensional complex manifolds have b...Lie groups of bi-M<span style="white-space:nowrap;">ö</span>bius transformations are known and their actions on non orientable <em>n</em>-dimensional complex manifolds have been studied. In this paper, <em>m</em>-M<span style="white-space:nowrap;">ö</span>bius transformations are introduced and similar problems as those related to bi-M<span style="white-space:nowrap;">ö</span>bius transformations are tackled. In particular, it is shown that the subgroup generated by every <em>m</em>-M<span style="white-space:nowrap;">ö</span>bius transformation is a discrete group. Cyclic subgroups are exhibited. Vector valued <em>m</em>-M<span style="white-space:nowrap;">ö</span>bius transformations are also studied.展开更多
For any finite-dimensional complex semisimple Lie algebra, two ellipsoids (primary and secondary) are considered. The equations of these ellipsoids are Diophantine equations, and the Weyl group acts on the sets of all...For any finite-dimensional complex semisimple Lie algebra, two ellipsoids (primary and secondary) are considered. The equations of these ellipsoids are Diophantine equations, and the Weyl group acts on the sets of all their Diophantine solutions. This provides two realizations (primary and secondary) of the Weyl group on the sets of Diophantine solutions of the equations of the ellipsoids. The primary realization of the Weyl group suggests an order on the Weyl group, which is stronger than the Chevalley-Bruhat ordering of the Weyl group, and which provides an algorithm for the Chevalley-Bruhat ordering. The secondary realization of the Weyl group provides an algorithm for constructing all reduced expressions for any of its elements, and thus provides another way for the Chevalley-Bruhat ordering of the Weyl group.展开更多
文摘Consider the real, simply-connected, connected, s-step nilpotent Lie group G endowed with a left-invariant, integrable almost complex structure J, which is nilpotent. Consider the simply-connected, connected nilpotent Lie group Gk, defined by the nilpotent Lie algebra g/ak, where g is the Lie algebra of G, and ak is an ideal of g. Then, J gives rise to an almost complex structure Jk on Gk. The main conclusion obtained is as follows: if the almost complex structure J of a nilpotent Lie group G is nilpotent, then J can give rise to a left-invariant integrable almost complex structure Jk on the nilpotent Lie group Gk, and Jk is also nilpotent.
文摘Analytic atlases on <img src="Edit_948e45b7-cbef-425e-bb79-28648b859994.png" width="23" height="22" alt="" /> can be easily defined making it an <em>n</em>-dimensional complex manifold. Then with the help of bi-M<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span>bius transformations in complex coordinates Abelian groups are constructed making this manifold a Lie group. Actions of Lie groups on differentiable manifolds are well known and serve different purposes. We have introduced in previous works actions of Lie groups on non orientable Klein surfaces. The purpose of this work is to extend those studies to non orientable <em>n</em>-dimensional complex manifolds. Such manifolds are obtained by factorizing <img src="Edit_7e5721ee-bb7f-4224-bd52-7d4641ac1c73.png" width="23" height="22" alt="" /> with the two elements group of a fixed point free antianalytic involution of <img src="Edit_ddfdac64-b296-48c5-9bb2-932eb3d76008.png" width="23" height="22" alt="" />. Involutions <strong>h(z)</strong> of this kind are obtained linearly by composing special M<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span>bius transformations of the planes with the mapping <img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="89" height="24" alt="" /><img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="85" height="22" alt="" />. A convenient partition of <img src="Edit_9e899708-41b0-4351-a12b-cc6efb5b1581.png" width="23" height="22" alt="" /> is performed which helps defining an internal operation on <img src="Edit_7cd42987-68f8-4e4c-9382-cbc68b56377e.png" width="49" height="26" alt="" /> and finally actions of the previously defined Lie groups on the non orientable manifold <img src="Edit_5740b48c-f9ea-438d-a87d-8cdc1f83662b.png" width="49" height="25" alt="" /> are displayed.
文摘We extend the Poincaré group to the complex Minkowski space-time. Special attention is paid to the corresponding algebra that we achieve through matrices as well as differential operators. We also point out the generalizations of the two Casimir operators.
文摘Lie groups of bi-M<span style="white-space:nowrap;">ö</span>bius transformations are known and their actions on non orientable <em>n</em>-dimensional complex manifolds have been studied. In this paper, <em>m</em>-M<span style="white-space:nowrap;">ö</span>bius transformations are introduced and similar problems as those related to bi-M<span style="white-space:nowrap;">ö</span>bius transformations are tackled. In particular, it is shown that the subgroup generated by every <em>m</em>-M<span style="white-space:nowrap;">ö</span>bius transformation is a discrete group. Cyclic subgroups are exhibited. Vector valued <em>m</em>-M<span style="white-space:nowrap;">ö</span>bius transformations are also studied.
文摘For any finite-dimensional complex semisimple Lie algebra, two ellipsoids (primary and secondary) are considered. The equations of these ellipsoids are Diophantine equations, and the Weyl group acts on the sets of all their Diophantine solutions. This provides two realizations (primary and secondary) of the Weyl group on the sets of Diophantine solutions of the equations of the ellipsoids. The primary realization of the Weyl group suggests an order on the Weyl group, which is stronger than the Chevalley-Bruhat ordering of the Weyl group, and which provides an algorithm for the Chevalley-Bruhat ordering. The secondary realization of the Weyl group provides an algorithm for constructing all reduced expressions for any of its elements, and thus provides another way for the Chevalley-Bruhat ordering of the Weyl group.