期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Real Hypersurfaces in Complex Two-Plane Grassmannians Whose Jacobi Operators Corresponding to -Directions are of Codazzi Type
1
作者 Carlos J. G. Machado Juan de Dios Pérez Young Jin Suh 《Advances in Pure Mathematics》 2011年第3期67-72,共6页
We prove the non-existence of Hopf real hypersurfaces in complex two-plane Grassmannians whose Jacobi operators or the Jacobi corresponding to the directions in the distribution are of Codazzi type if they satisfy a f... We prove the non-existence of Hopf real hypersurfaces in complex two-plane Grassmannians whose Jacobi operators or the Jacobi corresponding to the directions in the distribution are of Codazzi type if they satisfy a further condition. We obtain that that they must be either of type (A) or of type (B) (see [2]), but no one of these satisfies our condition. As a consequence, we obtain the non-existence of Hopf real hypersurfaces in such ambient spaces whose Jacobi operators corresponding to -directions are parallel with the same further condition. 展开更多
关键词 Real HYPERSURFACES complex two-plane grassmannians JACOBI Operators Codazzi TYPE
下载PDF
Hopf Hypersurfaces in Complex Two-Plane Grassmannians with Generalized Tanaka–Webster D-Parallel Shape Operator
2
作者 Hyunjin LEE Eunmi PAK Young Jin SUH 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2017年第1期61-70,共10页
In this paper, we consider a new notion of generalized Tanaka Webster З-parallel shape operator for a real hypersurface in a complex two-plane Grassrnannian and prove a non-existence theorem of a real hypersurface.
关键词 complex two-plane grassmannians real hypersurfaces generalized Tanaka-Webster con-nection parallel shape operator З-parallel shape operator
原文传递
Commuting Structure Jacobi Operator for Real Hypersurfaces in Complex Two-plane Grassmannians
3
作者 Carlos J.G.MACHADO Juan de Dios PREZ Young Jin SUH 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第1期111-122,共12页
We classify real hypersurfaces in complex two-plane Grassmannians whose structure Jacobi operator commutes either with any other Jacobi operator or with the normal Jacobi operator.
关键词 Real hypersurfaces complex two-plane grassmannians structure Jacobi operator normal Jacobi operator
原文传递
ON PSEUDO-HOLOMORHPIC CURVESIN COMPLEX GRASSMANNIANS 被引量:1
4
作者 SHENYIBING DONGYUXING 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1999年第3期341-350,共10页
Further geometry and topology for pseudo-holomorphic curves in complex Grassmannians Gm(CN) are studied. Some curvature pinching theorems for pseudo- holomorphic curyes with constant Kahler angles in Gm(CN) are obtain... Further geometry and topology for pseudo-holomorphic curves in complex Grassmannians Gm(CN) are studied. Some curvature pinching theorems for pseudo- holomorphic curyes with constant Kahler angles in Gm(CN) are obtained, so that the corresponding results for pseudoholomorphic curves in complex projective spaces are generalized. 展开更多
关键词 Pseudo-holomorphic curve complex grassmannian Kahler angle Curvature pinching
原文传递
Totally real minimal surfaces in complex Grassmannians
5
作者 莫小欢 《Chinese Science Bulletin》 SCIE EI CAS 1995年第14期1163-1166,共4页
Given a harmonic map φfrom a Riemann surface M into the complex projectivespace CP^n, by using the -transform associated to the map φ, Chern et al. obtained the se-quence of harmonic maps. We call it a harmonic sequ... Given a harmonic map φfrom a Riemann surface M into the complex projectivespace CP^n, by using the -transform associated to the map φ, Chern et al. obtained the se-quence of harmonic maps. We call it a harmonic sequence. We will say that a harmonicmap φ: M→CP^n is k-orthogonal if k consecutive maps in the harmonic sequence of φ aremutually orthogonal. In particular, φis conformal if and only if φ is 3-orthogonal and, inall cases, φ is at most (n+1)-orthogonal. There are two possible ways in which the 展开更多
关键词 MINIMAL SURFACE complex grassmannian totally real.
原文传递
G_(n,2)的Witten复形的同调群
6
作者 何刚 李明 杨莹 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第8期35-40,共6页
通过研究实Grassmann流形Gn,2的Witten复形,给出了该复形的同调群的具体公式.根据Witten复形的基本结论可知,Gn,2的Witten复形的同调群恰是Gn,2的整系数奇异同调群.
关键词 GRASSMANN流形 Witten复形 同调群
下载PDF
G_(5,2)的同调群 被引量:1
7
作者 冯惠涛 《重庆工学院学报》 2007年第21期1-6,共6页
利用Witten复形计算了实Grassmann流形G5,2的同调群,从而给出该方法的一个非平凡的例子.
关键词 GRASSMANN流形 Morse函数 Witten复形 不变流形 连接轨线
下载PDF
复双平面格拉斯曼中实超曲面的*-Ricci张量
8
作者 廖春艳 陈小民 《南昌大学学报(理科版)》 CAS 北大核心 2019年第4期317-325,330,共10页
主要考虑在复双曲双面格拉斯曼SU2,m/S(U2U m),m≥2中的实超曲面的复曲率张量中引入*-Ricci张量。我们首先证明了SU2,m/S(U2U m)的Hopf超曲面上不存在*-Einstein度量。作为*-Einstein度量的一个推广,我们引入了*-Ricci孤立子,并证明了... 主要考虑在复双曲双面格拉斯曼SU2,m/S(U2U m),m≥2中的实超曲面的复曲率张量中引入*-Ricci张量。我们首先证明了SU2,m/S(U2U m)的Hopf超曲面上不存在*-Einstein度量。作为*-Einstein度量的一个推广,我们引入了*-Ricci孤立子,并证明了一个具有*-Ricci孤立子的实超曲面的位势场是Reeb矢量场,是SU2,m/S(U2U m)中全测地子流行SU2,m-1/S(U2U m-1)管状领域的一部分或者是一个无穷远处的中心是奇异的极限球面。最后,我们研究了一个具有伪反交换*-Ricci张量的Hopf超曲面。 展开更多
关键词 *-Ricci张量 伪反交换*-Ricci张量 *-Einstein Hopf超曲面 复双平面格拉斯曼 *-Ricci孤立子
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部