Jordan's lemma can be used for a wider range than the original one. The extended Jordan's lemma can be described as follows. Let f(z) be analytic in the upper half of the z plane (Imz≥0), with the exception o...Jordan's lemma can be used for a wider range than the original one. The extended Jordan's lemma can be described as follows. Let f(z) be analytic in the upper half of the z plane (Imz≥0), with the exception of a finite number of isolated singularities, and for P>o, if then where z=Rei and CR is the open semicircle in the upper half of the z plane.With the extended Jordan's lemma one can find that Laplace transform and Fourier transform are a pair of integral transforms which relate to each other.展开更多
In this paper, the complex variable function method is used to obtain the hypersingular integral equations for the interaction between straight and curved cracks problem in plane elasticity. The curved length coordina...In this paper, the complex variable function method is used to obtain the hypersingular integral equations for the interaction between straight and curved cracks problem in plane elasticity. The curved length coordinate method and suitable quadrature rule are used to solve the integrals for the unknown function, which are later used to evaluate the stress intensity factor, SIF. Three types of stress modes are presented for the numerical results.展开更多
文摘Jordan's lemma can be used for a wider range than the original one. The extended Jordan's lemma can be described as follows. Let f(z) be analytic in the upper half of the z plane (Imz≥0), with the exception of a finite number of isolated singularities, and for P>o, if then where z=Rei and CR is the open semicircle in the upper half of the z plane.With the extended Jordan's lemma one can find that Laplace transform and Fourier transform are a pair of integral transforms which relate to each other.
文摘In this paper, the complex variable function method is used to obtain the hypersingular integral equations for the interaction between straight and curved cracks problem in plane elasticity. The curved length coordinate method and suitable quadrature rule are used to solve the integrals for the unknown function, which are later used to evaluate the stress intensity factor, SIF. Three types of stress modes are presented for the numerical results.