For detailed study of complex chemical reactions mechanisms experiment is conducted for selected private reactions. This causes a problem of kinetic parameters getting--the same set of rate constants must describe bot...For detailed study of complex chemical reactions mechanisms experiment is conducted for selected private reactions. This causes a problem of kinetic parameters getting--the same set of rate constants must describe both public and private reaction stages, and also a general mechanism. In this paper, solution of this problem for a reaction of olefins hydroalumination is proposed. To optimize the computational process a methodology of parallelization is elaborated. On the base of parallel computations, a kinetic model for the reaction assigned is constructed, and on its base, the physical and chemical conclusions about reaction mechanism are done.展开更多
A homochrial manganese(Ⅲ) complex(1) derived from chiral salen ligand(1 R,2 R)-(-)-1,2-diphenylethane-1,2-diamine-N,N?-bicarboxyl-salicylidene) has been synthesized through solvothermal procedure and charac...A homochrial manganese(Ⅲ) complex(1) derived from chiral salen ligand(1 R,2 R)-(-)-1,2-diphenylethane-1,2-diamine-N,N?-bicarboxyl-salicylidene) has been synthesized through solvothermal procedure and characterized by IR,elemental analysis,TGA,circular dichroism(CD),powder and single-crystal X-ray crystallography.It crystallizes in orthorhombic,space group P212121 with a = 9.108(3),b = 16.431(5),c = 26.531(6) A,V = 3970.4(19) A^3,Z = 4,Dc = 1.248 g/cm^3,F(000) = 1568,Mr = 745.73,μ = 0.383 mm^-1,the final GOOF = 0.957,R = 0.0631 and wR = 0.1079 for 13250 observed reflections with I 〉 2σ(I).The coordination polymer 1 possesses a 1 D infinite zigzag chain architecture constructed by the dicarboxyl-functionalized metallosalen ligand(Mn-salen),and the polymeric chains are further assembled into a 3D supramolecular network structure via strong intermolecular hydrogen bonding interactions between adjacent zigzag chains.As a heterogeneous catalyst,1 was used as an efficient heterogeneous catalyst for the asymmetric olefin epoxidation.展开更多
To save energy and raise molding and coremaking productivity, the synthetic procedure of novolaks for the shell process was investigated. The study indicated that it was difficult to obtain fast curing novolaks under ...To save energy and raise molding and coremaking productivity, the synthetic procedure of novolaks for the shell process was investigated. The study indicated that it was difficult to obtain fast curing novolaks under strongly acidic conditions alone. A novel synthetic procedure was proposed for preparing novolaks in a two-step manner, a divalent metal salt catalyzed novolak preparation followed by a strong acid catalyzed novolak preparation. The optimum conditions for the two-step procedure were determined by orthogonal experiment design. The results showed that it was easy to prepare fast curing novolaks with cure time in the range of 20 s to 30 s and softening point in the range of 80℃ to 90℃ under complex catalysis conditions.展开更多
Today's emergence of nano-micro hybrid structures with almost biological complexity is of fundamental interest. Our ability to adapt intelligently to the challenges has ramifications all the way from fundamentally ch...Today's emergence of nano-micro hybrid structures with almost biological complexity is of fundamental interest. Our ability to adapt intelligently to the challenges has ramifications all the way from fundamentally changing research itself, over applications critical to future survival, to posing globally existential dangers. Touching on specific issues such as how complexity relates to the catalytic prowess of multi-metal compounds, we discuss the increasingly urgent issues in nanotechnology also very generally and guided by the motto 'Bio Is Nature's Nanotech'. Technology belongs to macro-evolution; for example integration with artificial intelligence (AI) is inevitable. Darwinian adaptation manifests as integration of complexity, and awareness of this helps in developing adaptable research methods that can find use across a wide range of research. The second half of this work reviews a diverse range of projects which all benefited from 'playful' programming aimed at dealing with complexity. The main purpose of reviewing them is to show how such projects benefit from and fit in with the general, philosophical approach, proving the relevance of the 'big picture' where it is usually disregarded.展开更多
Exploring the factors to control Znsalen aggregation is of importance to design functional materials in catalysis, optical materials and biological imaging. In this work, we synthesized and characterized four cryptand...Exploring the factors to control Znsalen aggregation is of importance to design functional materials in catalysis, optical materials and biological imaging. In this work, we synthesized and characterized four cryptand type tri Znsalen complexes and found that cryptand structure could efficiently minimize intermolecular Zn…O interaction. More importantly, encapsulated by PLGA nanoparticles, cryptand tri Znsalen 1 displayed visible intracellular fluorescence whereas monomeric Znsalen 5 could not. These results provide a new access to design new luminescent materials with the potential application in optics and biological studies.展开更多
文摘For detailed study of complex chemical reactions mechanisms experiment is conducted for selected private reactions. This causes a problem of kinetic parameters getting--the same set of rate constants must describe both public and private reaction stages, and also a general mechanism. In this paper, solution of this problem for a reaction of olefins hydroalumination is proposed. To optimize the computational process a methodology of parallelization is elaborated. On the base of parallel computations, a kinetic model for the reaction assigned is constructed, and on its base, the physical and chemical conclusions about reaction mechanism are done.
基金supported by NSFC-21371119,21431004,21401128,21522104 and 21620102001the National Key Basic Research Program of China(No.2014CB932102 and 2016YFA0203400)the Shanghai“Eastern Scholar”Program
文摘A homochrial manganese(Ⅲ) complex(1) derived from chiral salen ligand(1 R,2 R)-(-)-1,2-diphenylethane-1,2-diamine-N,N?-bicarboxyl-salicylidene) has been synthesized through solvothermal procedure and characterized by IR,elemental analysis,TGA,circular dichroism(CD),powder and single-crystal X-ray crystallography.It crystallizes in orthorhombic,space group P212121 with a = 9.108(3),b = 16.431(5),c = 26.531(6) A,V = 3970.4(19) A^3,Z = 4,Dc = 1.248 g/cm^3,F(000) = 1568,Mr = 745.73,μ = 0.383 mm^-1,the final GOOF = 0.957,R = 0.0631 and wR = 0.1079 for 13250 observed reflections with I 〉 2σ(I).The coordination polymer 1 possesses a 1 D infinite zigzag chain architecture constructed by the dicarboxyl-functionalized metallosalen ligand(Mn-salen),and the polymeric chains are further assembled into a 3D supramolecular network structure via strong intermolecular hydrogen bonding interactions between adjacent zigzag chains.As a heterogeneous catalyst,1 was used as an efficient heterogeneous catalyst for the asymmetric olefin epoxidation.
文摘To save energy and raise molding and coremaking productivity, the synthetic procedure of novolaks for the shell process was investigated. The study indicated that it was difficult to obtain fast curing novolaks under strongly acidic conditions alone. A novel synthetic procedure was proposed for preparing novolaks in a two-step manner, a divalent metal salt catalyzed novolak preparation followed by a strong acid catalyzed novolak preparation. The optimum conditions for the two-step procedure were determined by orthogonal experiment design. The results showed that it was easy to prepare fast curing novolaks with cure time in the range of 20 s to 30 s and softening point in the range of 80℃ to 90℃ under complex catalysis conditions.
基金jointly supported by the Natural Science Foundation of Jiangsu Province (No.2012729)the Innovation Fund of Jiangsu Province (No.BY2013072-06)the National Natural Science Foundation of China (No.51171078 and No.11374136)
文摘Today's emergence of nano-micro hybrid structures with almost biological complexity is of fundamental interest. Our ability to adapt intelligently to the challenges has ramifications all the way from fundamentally changing research itself, over applications critical to future survival, to posing globally existential dangers. Touching on specific issues such as how complexity relates to the catalytic prowess of multi-metal compounds, we discuss the increasingly urgent issues in nanotechnology also very generally and guided by the motto 'Bio Is Nature's Nanotech'. Technology belongs to macro-evolution; for example integration with artificial intelligence (AI) is inevitable. Darwinian adaptation manifests as integration of complexity, and awareness of this helps in developing adaptable research methods that can find use across a wide range of research. The second half of this work reviews a diverse range of projects which all benefited from 'playful' programming aimed at dealing with complexity. The main purpose of reviewing them is to show how such projects benefit from and fit in with the general, philosophical approach, proving the relevance of the 'big picture' where it is usually disregarded.
基金supported by the National Scientific Foundation of China(No.20971007)National Key Basic Research Support Foundation of China(NKBRSFC)(Nos.2013CB933402,2015CB856300)
文摘Exploring the factors to control Znsalen aggregation is of importance to design functional materials in catalysis, optical materials and biological imaging. In this work, we synthesized and characterized four cryptand type tri Znsalen complexes and found that cryptand structure could efficiently minimize intermolecular Zn…O interaction. More importantly, encapsulated by PLGA nanoparticles, cryptand tri Znsalen 1 displayed visible intracellular fluorescence whereas monomeric Znsalen 5 could not. These results provide a new access to design new luminescent materials with the potential application in optics and biological studies.